Università telematica internazionale UNINETTUNO

Ingegneria civile e ambientale (Academic Year 2019/2020) - Costruzioni, Estimo e Topografia

Metodi e modelli di meccanica strutturale


Διαφάνειες

ν. μαθήματος 1: Calcolo differenziale per funzioni di più variabili (I parte)
   inizio

   Il teorema del differenziale totale

   Regole di derivazione e differenziazione

   Derivazione di funzione composta

   Derivate successive

   Altre notazioni per indicare le derivate successive

   Inizio - Riepilogo

   Teorema del differenziale totale

   Regole di derivazione in più variabili

   Derivate parziali successive
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 2: Calcolo differenziale per funzioni di più variabili (II parte)
   inizio

   Formula di Taylor per funzioni di più variabili

   Teorema di Taylor, per funzioni R2 -> R

   Differenziali successivi

   inizio - Riepilogo
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 3: Calcolo differenziale per funzioni di più variabili (III parte)
   inizio

   Massimi e minimi liberi

   Teorema di Fermat

   Forme quadratiche; criteri per i punti d’estremo liberi

   Criterio di Jacobi - Sylvester

   Inizio - Riepilogo

   Punti dimassimo e di minimo liberi; punti singolari

   Forme quadratiche

   Condizioni sufficienti per massimi e minimi: determinante Hessiano
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 4: Calcolo differenziale per funzioni di più variabili (IV parte) Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 5: Calcolo differenziale per funzioni di più variabili (V parte) Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 6: Equazioni differenziali ordinarie
   inizio

   Generalità sulle equazioni differenziali

   Alcuni tipi d’equazioni del prim’ordine

   Inizio - Riepilogo

   Equazioni differenziali: definizione

   Equazioni differenziali del I ordine: esempi
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 7: Equazioni differenziali ordinarie. Altri tipi integrabili per quadratura
   inizio

   Ulteriori tipi d’equazioni del prim’ordine

   Alcuni tipi d’equazioni del second’ordine

   Inizio - Riepilogo

   Equazioni differenziali del I ordine: metodo di quadratura; equazione di Bernoulli

   Equazioni differenziali del II ordine
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 8: Sistemi di equazioni ed equazioni differenziali lineari
   inizio

   Equazioni e sistemi d’equazioni differenziali ordinarie

   Sistemi d’equazioni differenziali ordinarie lineari a coefficienti continui

   Inizio - Riepilogo

   Equazioni differenziali e sistemi di equazioni differenziali

   Sistemi di equazioni differenziali lineari
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 9: Sistemi di equazioni ed equazioni differenziali lineari a coefficienti costanti (I parte)
   inizio

   Equazioni differenziali lineari a coefficienti costanti

   Equazione completa

   Inizio - Riepilogo

   Equazioni differenziali lineari i ordine n a coefficienti costanti
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 10: Sistemi di equazioni ed equazioni differenziali lineari a coefficienti costanti (II parte)
   inizio

   Termini noti di tipo particolare

   Oscillazioni forzate

   Accenno ai sistemi con coefficienti costanti

   Inizio - Riepilogo

   Equazioni differenzaili non omogenee

   Sistemi di equazioni differenziali a coefficienti costanti
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 11: Integrale (di Riemann) per funzioni di due o tre variabili su rettangoli
   inizio

   Integrali doppi e tripli

   Funzioni integrabili: caratterizzazione
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 12: Formule di riduzione per integrali doppi e tripli
   inizio

   Formule di riduzione per integrali doppi e tripli

   Teorema (di riduzione per integrali doppi)

   Formula di riduzione per corde in R3

   Formula di riduzione per sezioni in R3

   Integrazione su insiemi limitati di Rm

   Misura elementare o di Peano-Jordan

   Inizio - Riepilogo
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 13: Cambiamento di variabili per integrali doppi e tripli
   inizio

   Cambiamento di variabili per integrali doppi e tripli

   Teorema (cambiamento di variabili)

   Coordinate polari

   Coordinate cilindriche

   Coordinate sferiche

   Applicazioni al calcolo di aree, volumi, baricentri, momenti

   Esempi

   Baricentri

   Momenti d’inerzia

   Inizio - Riepilogo
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 14: Lo spazio vettoriale geometrico
   INTRODUZIONE

   CAPITOLO I-SEGMENTI ORIENTATI

   LO SPAZIO VETTORIALE GEOMETRICO
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 15: Operazioni di prodotto fra vettori
   INTRODUZIONE

   PRODOTTO SCALARE

   PRODOTTO VETTORIALE

   OPERAZIONI DI PRODOTTO TRA DUE VETTORI35
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 16: La rappresentazione cartesiana-Esercizi-Momento polare
   OPERAZIONI DI PRODOTTO TRA DUE VETTORI

   RAPPRESENTAZIONE CARTESSIANA

   RISOLUZIONE EQUAZIONI VETTORIALI

   ESERCIZI ALGEBRA VETTORIALE

   CAPITOLO II-VETTORI APPLICATI E CAMPI VETTORIALI

   VETTORI APPLICATI E MOMENTO POLARE
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 17: Momento assiale - Esercizi sui momenti
   MOMENTO ASSIALE

   ESERCIZI SUL MOMENTO POLARE E MOMENTO ASSIALE
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 18: Proprietà elementari dei campi vettoriali - Equivalenza
   CAMPO VETTORIALE- RISULTANTE E MOMENTO RISULTANTE

   CAMPI EQUIVALENTI- EQUIVALENZA A ZERO

   COPPIE EQUIVALENTI- COPPIE DI TRASPORTO

   EQUIVALENZA AL SISTEMA VETTORE

   ASSE CENTRALE- SISTEMI DI MOMENTO MINIMO
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 19: Esercizi sull'equivalenza. Funzioni a valori vettoriali
   CENTRO DI DUE VETTORI PARALLELI

   ESERCIZI SULL'EQUIVALENZA DI SISTEMI

   RIEPILOGO E SCHEMA DELLA CINEMATICA

   FUNZIONI A VALORI VETTORIALI

   PUNTO VARIABILE
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 20: Cinematica del punto -Velocità
   ASCISSA CURVILINEA- PROPRIETà ELEMENTARI DELLE CURVE

   I MODELLI DELLA CINEMATICA

   DESCRIZIONE DEL MOTO DI UN PUNTO

   VELOCITA'- SPOSTAMENTO ELEMENTARE E MOTI UNIFORMI
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 21: Cinematica del punto - Accelerazione - Moti piani
   SPOSTAMENTO FINITO E SPOSTAMENTO ELEMENTARE

   ACCELERAZIONE-MOTI UNIFORMEMENTE VARI

   MOTI PIANI- VELOCITA' ANGOLARE

   ESEMPIO DI MOTO PIANO
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 22: Esercizi di Cinematica del punto - Cinematica dei sistemi
   MOTO ARMONICO

   MOTO ARMONICO SMORZATO

   MOTO ELECOIDALE UNIFORME

   CINEMATICA DEI SISTEMI

   I SISTEMI MATERIALI- ATTI DI MOTO

   MOTI RIGIDI- RIFERIMENTO SOLIDALE
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 23: Proprietà dei moti rigidi-Moti rigidi elementari
   MOTI RIGIDI- TERNA SOLIDALE

   LA VELOCITA' DI ROTAZIONE ISTANTANEA-LEFORMULE DI POISSON

   CAMPO DELLE VELOCITA' NEI MOTI RIGIDI

   MOTI TRASLATORI, ROTATORI, ELICOIDALI
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 24: Il Teorema di Mozzi. Applicazioni
   ACCELLERAZIONI IN MOTO ROTATORIO. ROTAZIONI UNIFORMI E UNIFORMEMENTE VARIE

   MOTI RIGIDI ELICOIDALI

   ASSE DI MOTO E TEOREMA DI MOZZI

   ATTI DI MOTO ROTATORIO ED ASSI ISTANTANEI

   SPOSTAMENTI RIGIDI ELEMENTARI

   INTRODUZIONE AI MOTI RELATIVI: ESEMPIO
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 25: Moti relativi-Vincoli-Grado di libertà
   IL PRINCIPIO DEI MOTI RELATIVI-TEOREMA DI CORIOLIS

   VINCOLI-GRADO DI LIBERTA' E COORDINATE LAGRANGIANE
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 26: Sistemi vincolati -Moti rigidi piani
   VINCOLI OLONOMI O ANOLONIMI

   MOTI RIGIDI PIANI-CENTRO DI ROTAZIONE ISTANTANEA
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 27: Moti rigidi piani - Applicazioni ai meccanismi
   ROTOLAMENTO E STRISCIAMENTO

   MECCANISMI DI MOTI PIANI: ELLISSOGRAFO; MECCANISMO BIELLA-MANOVELLA; MECCANISMO CAMMA-PUNTERIA
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 28: Moti di precessione. Esercizi di riepilogo. Introduzione alla dinamica
   PROLOGO DELLA LEZIONE

   IL MECCANISMO CAMMA-PUNTERIA

   MOTI RIGIDI SFERICI

   PRECESSIONI REGOLARI

   PRECESSIONI DELLA TERRA

   ESERCIZI DI RIEPILOGO SULLA CINEMATICA DEI SISTEMI

   INTRODUZIONE ALLA DINAMICA: LEGGI DI NEWTON
Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 29: La Trazione Semplice (I parte)
ν. μαθήματος 30: La Trazione Semplice (II parte)
ν. μαθήματος 31: Lo stato di tensione Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 32: Lo stato di tensione in tre dimensioni
ν. μαθήματος 33: Cinematica del corpo deformabile
ν. μαθήματος 34: Cinematica del corpo deformabile nel piano
ν. μαθήματος 35: Equazione del materiale (materiali isotropi) Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 36: Calcolo delle tensioni: la flessione semplice (I parte) Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 37: Calcolo delle tensioni: la flessione semplice (II parte) Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 38: La flessione composta - Geometria delle aree Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 39: La torsione (I parte) e Taglio Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 40: La torsione (II parte) Πηγαίνετε σε αυτή τη διαφάνεια
ν. μαθήματος 41: Flessione e Taglio (I parte)
ν. μαθήματος 42: Flessione e Taglio (II parte)
ν. μαθήματος 43: Principio di De Saint Venant - caratteristiche di sollecitazione
ν. μαθήματος 44: Vincoli e grado di iperstaticità
ν. μαθήματος 45: Reazioni vincolari
ν. μαθήματος 46: Diagrammi delle caratteristiche di sollecitazione

Κεντρική Έδρα

Corso Vittorio Emanuele II, 39
00186 Roma - ITALIA
C.F.: 97394340588
P.IVA: 13937651001

Πιστοποιημένο email

info@pec.uninettunouniversity.net

Φοιτητική Γραμματεία

tel: +39 06 692076.70
tel: +39 06 692076.71
e-mail: info@uninettunouniversity.net

Τηλεδιάσκεψη

Library 1st floor: 90.147.90.157
Meeting Room 5th floor: 90.147.90.158

Χρειάζεστε περισσότερες πληροφορίες;

Δώστε μας τα στοιχεία επικοινωνίας σας


Ζήτησε πληροφορίες