Università telematica internazionale UNINETTUNO

هندسة تكنولوجيات المعلومات والاتصالات (السنة الدراسية 2019/2020) - هندسة تكنولوجيات المعلومات والاتصالات (Helwan University)

Calculus 2


الشرائح

درس رقم 1: Sequences
   Outline

   Numerical Sequences

   Convergence of sequences
إذهب إلى شرائح الدرس
درس رقم 2: Series إذهب إلى شرائح الدرس
درس رقم 3: Criteria for series convergence
   Outline

   Criteria for series convergence

   Ratio and root test
إذهب إلى شرائح الدرس
درس رقم 4: Sequences and series of functions
   Outline

   Sequences of functions

   Derivatives and integrals of limits

   Series of functions
إذهب إلى شرائح الدرس
درس رقم 5: Power Series
   Outline

   Power Series

   Radius of convergence

   Differentiation and integration of power series
إذهب إلى شرائح الدرس
درس رقم 6: Taylor series
   Outline

   Maclaurin series

   Polynomial approximation

   Taylor expansion of functions
إذهب إلى شرائح الدرس
درس رقم 7: Fourier series
   Outline

   Trigonometric expansion of functions

   Orthogonal functions

   Behaviour at discontinuties
إذهب إلى شرائح الدرس
درس رقم 8: Functions of two variables
   Outline

   Functions of two variables

   Graph
إذهب إلى شرائح الدرس
درس رقم 9: Continuity and Partial derivatives
   Outline

   Limit of functions of two variables

   Continuity

   Partial derivatives

   Higher - order partial derivatives
إذهب إلى شرائح الدرس
درس رقم 10: Differentiability
   Outline

   Differentiability of functions

   Chain rules

   Directional derivatives
إذهب إلى شرائح الدرس
درس رقم 11: Functions of three or more variables
   Outline

   Functions of many variables

   Partial derivatives

   Chain Rules

   Cylindrical and spherical transformations
إذهب إلى شرائح الدرس
درس رقم 12: Extreme of functions
   Outline

   Maxima, minima, saddle points

   Criteria for extrema

   Extrema on the boundary
إذهب إلى شرائح الدرس
درس رقم 13: Lagrange Multipliere
   Outline

   Extrema under constraints

   Lagrange multipliers
إذهب إلى شرائح الدرس
درس رقم 14: Double Integrals
   Outline

   Volume approximation by rectangles

   Double integrals

   Integration
إذهب إلى شرائح الدرس
درس رقم 15: Double integrals over regions
   Outline

   Double integrals over regions

   Iteration of integrals

   Techniques of integration
إذهب إلى شرائح الدرس
درس رقم 16: Change of variables
   Outline

   Change of variables into polars

   Change of variable formula for polars

   General change of variables

   Jacobians
إذهب إلى شرائح الدرس
درس رقم 17: Triple Integrals
   Outline

   Triple integrals over a rectangular domain

   Triple integrals over general domains

   Volumes as triple integrals
إذهب إلى شرائح الدرس
درس رقم 18: Evaluation of triple integrals
   Outline

   Techniques of evaluating triple integrals

   Iteration of integrals
إذهب إلى شرائح الدرس
درس رقم 19: Applications of integration
   Outline

   Volume of solids

   Mass of solids

   Center of mass

   Moment fo inertia

   Pappus Theorem
إذهب إلى شرائح الدرس
درس رقم 20: Differential equations
   Outline

   Idea of differential equations

   Separation of variables

   Homogeneous equations
إذهب إلى شرائح الدرس
درس رقم 21: First order differential equations
   Outline

   First order linear differential equations

   Integrating factor

   Exact equations
إذهب إلى شرائح الدرس
درس رقم 22: Second order linear differential equations
   Outline

   Second order differential equations

   Homogeneous equations

   Application
إذهب إلى شرائح الدرس
درس رقم 23: Second order inhomogeneous differential equations
   Outline

   Second order linear inhomogeneous differential equations

   Particular solutions

   Undetermined coefficients
إذهب إلى شرائح الدرس
درس رقم 24: Higher order differential equations
   Outline

   Higher order linear differential equations

   Homogeneous case

   Inhomogeneous case

   Methods of variation of parameters
إذهب إلى شرائح الدرس
درس رقم 25: Systems of differential equations
   Outline

   Linear systems of differential equations

   Method of D operators
إذهب إلى شرائح الدرس
درس رقم 26: Course overview
   Contents

   Complex function theory

   Working with functions and integrals

   A transform to the rescue

   Using complex numbers
إذهب إلى شرائح الدرس
درس رقم 27: Using complex number
   Contents

   Representing complex numbers

   Exponents and conjugates

   Applications to roots and powers

   Functions of a complex variable
إذهب إلى شرائح الدرس
درس رقم 28: Holomorphic functions
   Contents

   Mappings from the complex plane to itself

   Limits of a complex variable

   Complex derivatives

   Polynomial functions
إذهب إلى شرائح الدرس
درس رقم 29: The Cauchy Riemann equations
   Contents

   Partial derivatives

   Recognizing holomorphic functions

   Vector calculus

   Harmonic functions
إذهب إلى شرائح الدرس
درس رقم 30: Power series
   Contents

   Polynomials and series

   Absolute convergence

   Radius of convergence

   Analytic functions
إذهب إلى شرائح الدرس
درس رقم 31: Contour integration
   Contents

   Paths and curves

   The velocity integral

   Integrals along curves

   Length estimates
إذهب إلى شرائح الدرس
درس رقم 32: Cauchy's theorem
   Contents

   Fundamental theorem of calculus

   Regions in the plane

   Existence of primitives

   Integrating a holomorphic function
إذهب إلى شرائح الدرس
درس رقم 33: Cauchy's integral formula
   Contents

   Existence of primitives

   A singular integrand

   Integrating around circles

   Deforming a contour
إذهب إلى شرائح الدرس
درس رقم 34: Laurent series
   Contents

   Taylor series

   Derivatives of holomorphic functions

   Series of reciprocals

   Convergence in an annulus
إذهب إلى شرائح الدرس
درس رقم 35: Residues and boundaries
   Contents

   Laurent coefficients

   Simple closed contours

   Cauchy’s Theorem for boundaries

   Computing integrals using residues
إذهب إلى شرائح الدرس
درس رقم 36: Singularities and integrals
   Contents

   Isolated singularities

   Poles and zeros

   Computing and using residues

   Trigonometric integrals
إذهب إلى شرائح الدرس
درس رقم 37: Polynomials and definite integrals
   Contents

   Fundamental theorem of algebra

   Rational functions

   More integrals involving roots of unity

   More trigonometric integrals
إذهب إلى شرائح الدرس
درس رقم 38: Further integration tecnique
   Contents

   Indented contours

   Semicircular estimates

   Logarithmic integrals

   Summation of series
إذهب إلى شرائح الدرس
درس رقم 39: Laplace transforms
   Contents

   Basic properties

   Further examples

   Transforms of derivatives

   Solving an initial value problem
إذهب إلى شرائح الدرس
درس رقم 40: Transforms calculus
   Contents

   Limiting values and integrals

   New transforms from old

   Some special integrals

   Applications to finding inverse transforms
إذهب إلى شرائح الدرس
درس رقم 41: The inverse Laplace transforms
   Contents

   Inverting rational functions

   Known examples of inverse transforms

   Contour integral interpretation

   Applying the inversion theorem
إذهب إلى شرائح الدرس
درس رقم 42: The theory of distributions
   Contents

   The set of test functions

   Linear functionals

   Distributions as limits

   Derivatives of distributions
إذهب إلى شرائح الدرس
درس رقم 43: Working with distributions
   Contents

   Operations on distributions

   Differentiation and limits

   Principal value integrals

   Infinite sums and series
إذهب إلى شرائح الدرس
درس رقم 44: Convolution of function
   Contents

   Motivating examples

   Convolution as a product

   Spaces of integrable functions

   Convolution with a distribution
إذهب إلى شرائح الدرس
درس رقم 45: The Fourier transform
   Contents

   First examples

   Spectral analysis

   Derivatives and products

   Transform of a convolution
إذهب إلى شرائح الدرس
درس رقم 46: Fourier inversion
   Contents

   The inversion theorem

   Proof of inversion

   Using a convolution

   The Schwartz space
إذهب إلى شرائح الدرس
درس رقم 47: Fourier transforms of distributions
   Contents

   Convergence in Schwartz space

   Tempered distributions

   The generalized Fourier transform

   Generalized inversion
إذهب إلى شرائح الدرس
درس رقم 48: Back to Laplace transforms
   Contents

   Laplace versus Fourier

   Laplace convolution

   An application to beam bending

   Laplace inversion
إذهب إلى شرائح الدرس
درس رقم 49: Derivatives, series and integrals
   Contents

   Another differential equation

   Solution by series

   Laurent coefficients

   Laplace transform of an integral
إذهب إلى شرائح الدرس
درس رقم 50: A final application
   Contents

   A partial differential equation

   The heat kernel

   Final example

   Acknowledgements
إذهب إلى شرائح الدرس

مقر الجامعة

Corso Vittorio Emanuele II, 39
00186 Roma - ITALIA
الرقم الضريبي: 97394340588
P.IVA: 13937651001

البريد الألكتروني المسجل

info@pec.uninettunouniversity.net

مكتب الطلاب

tel: +39 06 692076.70
tel: +39 06 692076.71
e-mail: info@uninettunouniversity.net

عقد المؤتمرات عبر الفيديو

Library 1st floor: 90.147.90.157
Meeting Room 5th floor: 90.147.90.158

هل تريد مزيد من المعلومات؟

أترك معلومات الاتصال الخاصة بك


أطلب المعلومات