Università telematica internazionale UNINETTUNO

MOOC Massive Open Online Courses (Anno Accademico 2019/2020)

Mathematics I


Slides

Lezione n. 1: Introduction
   Differential and Integral Calculus

   Limit

   Squaring of the parabola
Vai alla slide della lezione
Lezione n. 2: Real Numbers
   Sets and relations

   The set R

   Algebraic and order properties

   Inequalities

   Neighborhood

   Cartesian product
Vai alla slide della lezione
Lezione n. 3: Real Functions
   The Function as a Concept

   Characteristics of f

   Domain and range of a function
Vai alla slide della lezione
Lezione n. 4: Classifications of functions
   The Function

   Even Function

   Odd Function

   Monotonically increasing

   Periodic Function

   New Equation
Vai alla slide della lezione
Lezione n. 5: Basic functions
   Power function

   Exponential function

   Trigonometric functions

   Trigonometric identities

   Hyperbolic identities
Vai alla slide della lezione
Lezione n. 6: Composite functions
   Composite functions in engineering

   Method of constructing fog
Vai alla slide della lezione
Lezione n. 7: Inverse functions
   Steps to obtain f

   Logarithmic Function

   Solving the equation

   Theorem
Vai alla slide della lezione
Lezione n. 8: Limits
   Limit of a sequence

   Limit of a Function

   One?sided limit
Vai alla slide della lezione
Lezione n. 9: Limit theorem
   Basic theorems

   Squeeze Theorem
Vai alla slide della lezione
Lezione n. 10: Continuity
   Definition of Continuity

   Continuity Theorems

   Continuity on an Interval

   The Extreme Value Theorem
Vai alla slide della lezione
Lezione n. 11: Differentiation
   Definition of the Derivative

   Differentiability on an Interval

   Differentiation Laws

   Derivatives of Basic Functions
Vai alla slide della lezione
Lezione n. 12: Derivative of the inverse, composite and implicit functions
   Derivative of the Inverse Function

   Derivative of the Composite Function

   Derivative of Implicit and parametric Functions

   Repeated Differentiation
Vai alla slide della lezione
Lezione n. 13: Applications to the derivative
   Mean Value Theorem and Taylor Formula

   Approximations
Vai alla slide della lezione
Lezione n. 14: Indeterminate forms and l'hospital rule
   Indeterminate quantities

   Cauchy mean value theorem

   L?Hospital Rule

   Convexity, Concavity and Extrema

   Convexity and Concavity
Vai alla slide della lezione
Lezione n. 15: Maximum and minimum values of a function
   Definition of a Local Extrema

   1th test of Local Extrema

   2nd test of Local Extrema

   Definition of the Absolute Extrema
Vai alla slide della lezione
Lezione n. 16: Curve sketching
   Mechanical techniques for drawing graphs

   Graphical Properties
Vai alla slide della lezione
Lezione n. 17: Antiderivative or the indefinite integral
   Notion of the Indefinite integral

   Remarks about the Antiderivative

   Properties of the indefinite integral
Vai alla slide della lezione
Lezione n. 18: Integration by substitution
   Theorem

   By Completing the Square
Vai alla slide della lezione
Lezione n. 19: Integration by parts
   Theorem

   Reduction Formula
Vai alla slide della lezione
Lezione n. 20: Trigonometric and hyperbolic integrals
   The equivalence of trigonometric and hyperbolic integrals

   Rules for even and odd powers

   When do the rules fail
Vai alla slide della lezione
Lezione n. 21: Trigonometric and hyperbolic substitutions
   Types of substitutions

   By using a reduction formula

   A second method
Vai alla slide della lezione
Lezione n. 22: Integration by partial fractions
   Partial fractions representation

   Some Integrals
Vai alla slide della lezione
Lezione n. 23: The definite integral
   The Definite Integral as a Limit to Riemann Sum

   Riemann Sum

   Theorem
Vai alla slide della lezione
Lezione n. 24: Properties of the definite integral
   Properties of integrable functions

   Useful theorems on parity

   Integral Mean value theorem
Vai alla slide della lezione
Lezione n. 25: Fundamental theorem for calculus -
   The fundamental theorem

   Improper integrals

   Applications to the Integral

   Calculating Areas

   Solid of Revolution

   Length of Curves

   Surface Areas of Revolution
Vai alla slide della lezione

Sede centrale

Corso Vittorio Emanuele II, 39
00186 Roma - ITALIA
C.F.: 97394340588
P.IVA: 13937651001

Posta certificata

info@pec.uninettunouniversity.net

Segreteria Studenti

Numero verde: 800 333 647
tel: +39 06 692076.70 (1)
e-mail: info@uninettunouniversity.net

Videoconferenza

Biblioteca 1^ piano: 90.147.90.157
Sala Riunioni 5^ piano: 90.147.90.158

Hai bisogno di maggiori informazioni?

Lasciaci i tuoi dati


Richiedi informazioni