

DOUBLE DEGREE PROGRAM IN

INFORMATION AND COMMUNICATION TECHNOLOGIES

ENGINEERING

GRADUATION PROJECT REPORT

BRAIN COMPUTER INTERFACE

SYSTEM

Advisers

Prof. Amr El-said

Prof. Claudio Fornaro

Students

Mostafa Ahmed Yousef

Mostafa Ezz EL-din Mohamed

Academic year 2011/12

 II

Acknowledgment

First of all,We thank our parents, for advising, praying and supporting in

every thing in our lives and specially for the 5 years we studying Engineering.

We would like to thank our university Helwan and Uninettuno university for

learning us communication engineering and for all professors and doctors.

We deeply thank our Prof. Amr El Said, whose help, advice and supervision

was invaluable.

We also thank Prof. Claudio Fornaro, with whom We discussed with him this

project and supervision.

Finally, special thanks for Eng. Hazem Khaled, who help us how to program

with C# and using Arduino .

 III

Indication and jobs:

 Mostafa Ahmed Yousef :

 Write the Project description.

 Preface and History.

 Introduction to BCI.

 Chapter 1 Neruosky.

 Chapter 4 the interface and forms of GUI to the system by C#.

 Mostafa Ezz Eldin Mohmed :

 Chapter 2 Arduino.

 Chapter 3 the Implementation of the Robot.

 Chapter 4 the software of Arduino IDE.

 Conclusion and future work.

 IV

Table of Contents:

Project Description

IX

Summary
1

Introduction

4
Brain Computer Interface (BCI)

4

History

4

What is EEG

5

Physical Mechanisms

6

Brain Features

7

Brain Waves

8

Chapter 1 : NeuroSky MindSet
9

NeuroSky Technology Overview

10

Brainwaves

10

ThinkGear

11

ThinkGear Data Values

11

POOR_SIGNAL Quality

11

eSense

12

eSense Meter - General Information

12

eSense Meter - Technical Description

13

ATTENTION eSense

14

MEDITATION eSense

14

RAW Wave Value (16-bit)

14

ASIC_EEG_POWER

15

Blink Strength

15

ThinkGear Packets

16

Packet Structure

16

Packet Header

17

Data Payload

17

Payload Checksum

18

Setting Up Your MindSet

18

http://www.neurosky.com/mindset/mindset.html

 II

Chapter 2 : Arduino
19

Introduction

19

What Is Physical Computing?

21

The Arduino Platform

22

The Arduino Hardware

23

Digital I/O

24

Analog I/O

25

Pulse Width Modulation

26

Other board components

27

Arduino Uno specification

28

Bootloader

29

Power pins

29

Other pins

30

Polyfuse

31

The Arduino Software (IDE)

32

Features of the Arduino (IDE)

32

The programming cycle on Arduino

33

Anatomy of a “sketch”

34

Installing Arduino on Your Computer

35

Installing Drivers: Macintosh

35

Installing Drivers: Windows

36

Sensors and Actuators

37

Chapter 3: Building the Robot
38

Tools and Parts

39

Tools

41

Gearbox dc motor

42

Chassis

43

Attaching Arduino

47

Attaching Solderless Breadboard

48

Attaching the motor driver

49

Bluetooth shield

54

 III

Chapter 4 : the software (Coding)
55

 The Arduino IDE

55

 The C # Code and the Interface of the system

62

Conclusion and future work
66

References
68

 IV

List of Figure

Figure P-1 proto type of the project

VII

FigureP-2 General Structure of BCI system

2

Figure P-2 the distribution of the sensors on the Cortex

3

Figure P-3 the function of the brain

4

Figure P-4 the Brain Waves

5

Figure 1-1 NeuroSky MindSet

9

Figure 1-2 Overview of the MindSet

18

Figure 2-1 Arduino

19

Figure 2-2 Digital I/O Pins

24

Figure 2-3 Analog I/O Pins

25

Figure 2-4 Digital Pins with PWM

26

Figure 2-5 Other board components

27

Figure 2-6 Arduino Uno specification

28

Figure 2-7 Bootloader

29

Figure 2-8 Power Pins

29

Figure 2-9 Other pins

30

Figure 2-10 Polyfuse

31

Figure 2-11 chip of Polyfuse

32

Figure 2-12 The programming cycle on Arduino

33

Figure 2-13 Anatomy of a “sketch”

34

Figure 3-1 shows the parts & tools of the robot

39

Figure 3-2 Chassis part list

40

Figure 3-3 Tools

41

Figure 3-4 Assembly instruction

43

Figure 3-5 Assembly instruction

44

Figure 3-6 Soldering the wires with dc motor

44

Figure 3-7 Assembly the gear box

45

Figure 3-8 assemble the wheel

46

Figure 3-9 assemble the chassis up

46

Figure 3-10 attach the arduino over the upper chassis

47

Figure 3-11 attaching the breadboard

48

 V

Figure 3-12 the battery holder

48

Figure 3-13 the robot after put the hardware parts

49

Figure 3-14 show the pin orientation

50

Figure 3- 15 the function of pin

51

Figure 3-16 True tables for pin 1 and pin 2

51

Figure 3-17 the connection of motors and the power

52

Figure 3-18 Connect arduino with motor driver pins

53

Figure 3-19 belts Bluetooth with arduino

54

Figure 4-1 the interface of the software

62

Figure 4-2 the interface of the brain signals and attention ratio

63

 II

Project Description

The ultimate purpose of a direct brain computer interface (BCI) is to allow an individual

with severe motor disabilities to have effective control over devices.

A BCI system detects the presence of specific patterns in a person’s ongoing brain activity

that relates to the person’s intention to initiate control.

In our project we use a robotic car as a prototype for this idea we will control the robotic

car by the attention ratio of the Nerousky mindwave as the speed of the robotic car and we

use the line detector to make the robotic car in the terminal or the road.

We make all the system full wireless and we use the Bluetooth shield with arduino to

connect the hardware (Robotic car) with Neruosky(Bluetooth dongle) and the Laptop.

Figure P-1 proto type of the project

 III

We divide our project to many tasks to reach the final proto type :

 The first task was dealing with the brain signals by using the thinkgear packet and

creates the interface of the brain signals (Alpha- beta- gamma- theta-ratio of

attention and mediation).

 The second task was using arduino to control the rate of light of LED because it is

similar to control the dc motor and we use the attention ration as the rate of the

light.

 The third task was building the robotic car and we make a small test to control it by

a simple program in arduino to move forward and take a delay and move to the

right and take a delay and move to the left then take a delay to move again to

forward .

 The fourth task was connecting the Bluetooth shield in the arduino to control it

wireless.

 The fifth task was about a small program by the C# to control the robot by form of

the direction as the keyboard and the controlling was full wireless.

 The final task was use the first program in the first task to control the speed of the

dc motor by divide the speed to 3 parts (small – medium-high).

 1

Summary

The ultimate purpose of a direct brain computer interface (BCI) is to allow an individual

with severe motor disabilities to have effective control over devices.

A BCI system detects the presence of specific patterns in a person’s ongoing brain activity

that relates to the person’s intention to initiate control.

In our project we use a mind-controlled robot as a prototype for this idea.

The bot is easy to use. You put on a headband and when you concentrate,

the bot moves. Focus more and it goes faster. And it’s a real robot too; it

avoids edges so that it stays on the table.

The robot part was based on soccer bot from Make: Arduino Bots and Gadgets (O'Reilly,

2011). We read the EEG with a NeuroSky MindWave. The early model had touse a

computer as a gateway between Arduino and MindWave, because we were running the

Mind Wave software and our own Python program on the computer.

EEG in Your Living Room Control a computer with just your mind. On one hand, it

sounds almost like a sci-fi fantasy. On the other, EEG (electroencephalography) was first

used in the early 20th century. What kept you waiting for the future?.

EEG is the recording of electrical activity of the brain from the scalp, produced by neurons

firing in the brain. The brain cortex produces tiny electrical.

voltages (1–100 μV on the scalp). EEG doesn’t read your thoughts, but it can

tell your general state. For example, EEG can show if you are paying attention

or meditating.The tiny voltages are easily masked by electrical noise from muscles and

ambient sources. EEG currents are measured in microvolts (μV), which are

millionths of a volt:

1 μV = 0.001 mV = 10^-6 V.

 2

Noise from muscle and eye movement can be quite powerful compared to

this. In normal buildings, the electrical main’s current radiates a 50Hz or

60Hz electromagnetic field. In a laboratory setting, EEG is usually measured

in a room that has less interference. At home, the EEG unit must filter out

the troublesome signals.

EEG devices used to be prohibitively expensive and annoying to connect,

and the data required expert knowledge to interpret. For many years, a

starting price for the cheapest EEG units was thousands of dollars. They

required conductive gel to connect. Having very clean hair and skin was recommended.

Most units used at least 19 electrodes. EEG results were printed

on paper and doctors had to take a course to be able to analyze them.

Now EEGs are cheap, starting from $100 (USD). Devices are available in shops and by

mail order. Consumer-level EEG units are manufactured by NeuroSky and Emotiv. (OCZ

used to make a similar device.) With the Open- EEG project, you can even build an EEG

device yourself.

NeuroSky’s units are the cheapest option, starting from $100 for the Mind-

Wave. The headband is fast to attach and works on dry skin without any gels. It only needs

electrical contact on your forehead and earlobe. NeuroSky devices measure attention and

meditation as well as the raw brainwave data.

Emotiv EPOC promises to recognize multiple visualized thoughts. At $300,

it’s not very expensive. The Emotive EPOC headset also measures head tilt

and muscle activity.

OCZ used to make the mOCZ Neural Impulse Actuator which cost about $100. It made

multiple measurements, mostly concentrating on muscle activity.

The OpenEEG project provides instructions on how to build your own EEG device. It’s the

most expensive option, costing about $500. Building the device requires both technical

skills and understanding of safety issues. After all, EEG involves connecting wires on

different sides of your head.!

 3

You need to know the basics of programming Arduino. You should make sure you can run

a 'hello world' or 'blink' example on your Arduino before you try anything else. This means

that you should also have the Arduino IDE installed. If you need help with this, see

"Starting with Arduino" (page 18) in MABG. For hand-holding walkthrough code

examples, see any of the projects in that book. You may also want to look at Massimo

Banzi's Getting Started with Arduino (O'Reilly , 2011) if you need a beginner's

introduction. However, as a prospective robot builder , you will find the projects in MABG

an excellent complement to the one in this book.

You should have basic mechanical building skills. You'll solder wires to a DC Motor and

your own connections to MindWave to build the robot platform.

 4

Introduction

Brain Computer Interface (BCI): often called a mind-machine interface (MMI) , is

a direct communication pathway between the brain and an external device. BCIs

are often directed at assisting, augmenting, or repairing human cognitive or

sensory-motor functions.

Research on BCIs began in the 1970s at the University of California Los Angeles

 (UCLA) under a grant from the National Science Foundiation followed by a

contract from DARPA.

The papers published after this research also mark the first appearance of the

expression brain–computer interface in scientific literature.

The field of BCI research and development has since focused primarily on

neuroprosthetics applications that aim at restoring damaged hearing, sight and

movement. Thanks to the remarkable cortical plasticity of the brain, signals from

implanted prostheses can, after adaptation, be handled by the brain like natural sensor or

effector channels. Following years of animal experimentation, the first neuroprosthetic

devices implanted in humans appeared in the mid-1990s.

History :

The history of brain–computer interfaces (BCIs) starts with Hans Berger's discovery of the

electrical activity of the human brain and the development of electroencephalography

(EEG). In 1924 Berger was the first to record human brain activity by means of EEG. By

analyzing EEG traces, Berger was able to identify oscillatory activity in the brain, such as

the alpha wave (8–12 Hz), also known as Berger's wave.

Berger's first recording device was very rudimentary. He inserted silver wires under the

scalps of his patients. These were later replaced by silver foils attached to the patients' head

by rubber bandages. Berger connected these sensors to a Lippmann capillary electrometer,

with disappointing results. More sophisticated measuring devices, such as the Siemens

double-coil recording galvanometer, which displayed electric voltages as small as one ten

thousandth of a volt, led to success.

Berger analyzed the interrelation of alternations in his EEG wave diagrams with brain

diseases. EEGs permitted completely new possibilities for the research of human brain

activities.

 5

What is EEG :

An electroencephalogram is a measure of the brain's voltage fluctuations as detected from

scalp electrodes.It is an approximation of the cumulative electrical activity of neurons.

Electroencephalography (EEG) is the most studied potential non-invasive

interface, mainly due to its fine temporal resolution, ease of use, portability and low

set-up cost. But as well as the technology's susceptibility to noise, another

substantial barrier to using EEG as a brain–computer interface is the extensive

training required before users can work the technology. For example, in

experiments beginning in the mid-1990s, Niels Birbaumer at theUniversity of

Tübingen in Germany trained severely paralysed people to self-regulate the slow

cortical potentials in their EEG to such an extent that these signals could be used

as a binary signal to control a computer cursor. (Birbaumer had earlier

trained epileptics to prevent impending fits by controlling this low voltage wave.)

The experiment saw ten patients trained to move a computer cursor by controlling

their brainwaves. The process was slow, requiring more than an hour for patients

to write 100 characters with the cursor, while training often took many months.

FigureP-2 General Structure of BCI system

http://en.wikipedia.org/wiki/Electroencephalography
http://en.wikipedia.org/wiki/Temporal_resolution
http://en.wikipedia.org/wiki/Noise
http://en.wikipedia.org/wiki/University_of_T%C3%BCbingen
http://en.wikipedia.org/wiki/University_of_T%C3%BCbingen
http://en.wikipedia.org/wiki/Germany
http://en.wikipedia.org/wiki/Epilepsy

 6

Physical Mechanisms:

EEGs require electrodes attached to the scalp with sticky gel . Require physical connection

to the machine.

Electrode Placement:

 Standard “10-20 System”

 Spaced apart 10-20%

 Letter for region

 F - Frontal Lobe

 T - Temporal Lobe

 C - Center

 O - Occipital Lobe

 Number for exact position

 Odd numbers - left

 Even numbers - right

Figure P-2 the distribution of the sensors on the Cortex

 7

 Figure P-3 the function of the brain

Brain Features:

User must be able to control the output:

Use a feature of the continuous EEG output that the user can reliably modify (waves), or

Evoke an EEG response with an external stimulus (evoked potential).

 8

Brain Waves:

Generally grouped by frequency: (amplitudes are about 100µV max).

Figure P-4 the Brain Waves

 9

Chapter1 NeuroSky MindSet

Figure 1-1 NeuroSky MindSet

The NeuroSky MindSet is a brainwave sensing headset which uses a ‘medical grade’ probe

to capture brain patterns and translate them into stuff you can do with a computer.

http://www.neurosky.com/mindset/mindset.html
http://www.neurosky.com/mindset/mindset.html

 10

NeuroSky Technology Overview:

Brainwaves:

The last century of neuroscience research has greatly increased our knowledge about the

brain and particularly, the electrical signals emitted by neurons firing in the brain. the

patterns and frequencies of these electrical signals can be measured by placing a sensor on

the scalp. the MindSet contains NeuroSky thinkGear™ technology, which measures the

analog electrical signals, commonly referred to as brainwaves, and processes them into

digital signals to make the measurements available to games and applications. the table

below gives a general synopsis of some of the commonly-recognized frequencies

that tend to be generated by different types of activity in the brain:

BrainWave Type Frequency range Mental states and

conditions

Delta 0.1 Hz to 3 Hz Deep, dreamless sleep, non-

REM sleep, unconscious

Theta 4 Hz to 7 Hz Intuitive, creative, recall,

fantasy, imaginary, dream

Alpha 8 Hz to 12 Hz Relaxed, but not drowsy,

tranquil, conscious

Low Beta 12 Hz to 15 Hz Formerly SMR, relaxed yet

focused, integrated

Midrange Beta 16 Hz to 20 Hz inking, aware of self &

surroundings

High Beta 21 Hz to 30 Hz Alertness, agitation

 11

ThinkGear:

thinkGear is the technology inside every NeuroSky product or partner product that enables

a device to interface with the wearers’ brainwaves. It includes the sensor that touches the

forehead, the contact and reference points located on the ear pad, and the on-board chip

that processes all of the data. Both the raw brainwaves and the eSense Meters (Attention

and Meditation) are calculated on the thinkGear chip.

ThinkGear Data Values:

POOR_SIGNAL Quality:

this unsigned one-byte integer value describes how poor the signal measured by the

thinkGear is. It ranges in value from 0 to 200. Any non-zero value indicates that some sort

of noise contamination is detected. the higher the number, the more noise is detected. A

value of 200 has a special meaning, specifically that the thinkGear contacts are not

touching the user's skin. this value is typically output every second, and indicates the

poorness of the most recent measurements. Poor signal may be caused by a number of

different things. In order of severity, they are:

• Sensor, ground, or reference contacts not being on a person's head (i.e. when nobody is

wearing the thinkGear).

• Poor contact of the sensor, ground, or reference contacts to a person's skin (i.e. hair in the

way, or headset which does not properly fit a person's head, or headset not properly placed

on the head).

• Excessive motion of the wearer (i.e. moving head or body excessively, jostling the

headset).

• Excessive environmental electrostatic noise (some environments have strong electric

signals or static electricity buildup in the person wearing the sensor).

• Excessive non-EEG biometric noise (i.e. EMG, EKG/ECG, EOG, etc)

A certain amount of noise is unavoidable in normal usage of inkGear, and both

NeuroSky's filtering technology and eSense™ algorithm have been designed to detect,

correct, compensate for, account for, and tolerate many types of non-EEG noise.

 12

Most typical users who are only interested in using the eSense values, such as Attention

and Meditation, do not need to worry too much about the POOR_SIGNAL Quality value,

except to note that the Attention and Meditation values will not be updated while

POOR_SIGNAL is detected. the POOR_SIGNAL Quality value is more useful to some

applications which need to be more sensitive to noise (such as some medical or research

applications), or applications which need to know right away when there is even minor

noise detected. By default, output of this Data Value is enabled. It is typically output once

a second.

eSense:

eSense™ is a NeuroSky's proprietary algorithm for characterizing mental states. To

calculate eSense, the NeuroSky thinkGear technology amplifies the raw brainwave signal

and removes the ambient noise and muscle movement. the eSense algorithm is then applied

to the remaining signal, resulting in the interpreted eSense meter values. Please note that

eSense meter values do not describe an exact number, but instead describe ranges of

activity

eSense Meter - General Information:

the eSense meters are a way to show how effectively the user is engaging Attention

(similar to concentration) or Meditation (similar to relaxation).

Like exercising an unfamiliar muscle, it may take some time to gain full proficiency with

each of the eSense™ meters. In many cases, people tend to be better at one eSense than the

other when they first begin. We recommend trying different tactics until you are successful

with one. Once you see a reaction on the screen from your efforts, you will be able to

duplicate the action more easily with additional practice.

Generally, Attention can be controlled through a visual focus. Focus on a singular idea.

Try to “funnel” your concentration and focus your train of thought towards pushing up the

meter. Other suggestions include picking a point on the screen to stare at or imagining the

action you are trying to accomplish happening. For example, look at the Attention eSense

meter and imagine the dial moving towards higher numbers.

 13

For Meditation, it typically helps to try to relax yourself. Connect to a sense of peace and

calm by clearing your mind of thoughts and distractions. If you are having difficulty

engaging Meditation, close your eyes, wait a number of seconds, and then open your eyes

to see how the meter has responded.

If you have trouble at first in controlling your eSense meter levels, be patient. Try different

techniques and practice. Also be sure to read and try to understand the Technical

Description in order to get a better idea about how eSense actually works under the hood.

eSense Meter - Technical Description:

For each different type of eSense (i.e. Attention, Meditation), the meter value is reported

on a relative eSense scale of 1 to 100. On this scale, a value between 40 to 60 at any given

moment in time is considered “neutral” and is similar in notion to “baselines” that are

established in conventional brainwave measurement techniques (though the method for

determining a thinkGear baseline is proprietary and may differ from conventional

brainwaves).

A value from 60 to 80 is considered “slightly elevated”, and may be interpreted as levels

tending to be higher than normal (levels of Attention or Meditation that may be higher than

normal for a given person). Values from 80 to 100 are considered “elevated”, meaning they

are strongly indicative of heightened levels of that eSense.

Similarly, on the other end of the scale, a value between 20 to 40 indicates “reduced”

levels of the eSense, while a value between 1 to 20 indicates “strongly lowered” levels of

the eSense. these levels may indicate states of distraction, agitation, or abnormality,

according to the opposite of each eSense. the reason for the somewhat wide ranges for each

interpretation is that some parts of the eSense algorithm are dynamically learning and at

times employ some “slow-adaptive” algorithms to adjust to natural fluctuations and trends

of each user, accounting for and compensating for the fact that brainwaves in the human

brain are subject to normal ranges of variance and fluctuation. this is part of the reason

why thinkGear sensors are able to operate on a wide range of individuals under an

extremely wide range of personal and environmental conditions, while still giving good

accuracy and reliability.

 14

ATTENTION eSense

the eSense Attention meter indicates the intensity of a user's level of mental “focus” or

“attention”, such as that which occurs during intense concentration and directed (but

stable) mental activity. Its value ranges from 0 to 100. Distractions, wandering thoughts,

lack of focus, or anxiety may lower the Attention meter level.

MEDITATION eSense

the eSense Meditation meter indicates the level of a user's mental “calmness” or

“relaxation”. Its value ranges from 0 to 100. Note that Meditation is a measure of a

person's mental states, not physical levels, so simply relaxing all the muscles of the body

may not immediately result in a heightened Meditation level. However, for most people in

most normal circumstances, relaxing the body often helps the mind to relax as well.

Meditation is related to reduced activity by the active mental processes in the brain.

It has long been an observed effect that closing one's eyes turns off the mental activities

which process images from the eyes. So closing the eyes is often an effective method for

increasing the Meditation meter level. Distractions, wandering thoughts, anxiety, agitation,

and sensory stimuli may lower the Meditation meter levels.

RAW Wave Value (16-bit):

this Data Value consists of two bytes, and represents a single raw wave sample. Its value is

a signed 16-bit integer that ranges from -32768 to 32767. the first byte of the Value

represents the high-order bits of the twos-compliment value, while the second byte

represents the low-order bits. To reconstruct the full raw wave value, simply shift the first

byte left by 8 bits, and bitwise-or with the second byte:

short raw = (Value[0]<<8) | Value[1];

where Value[0] is the high-order byte, and Value[1] is the low-order byte.

In systems or languages where bit operations are inconvenient, the following arithmetic

operations may be substituted instead:

raw = Value[0]*256 + Value[1];

if(raw >= 32768) raw = raw - 65536;

where raw is of any signed number type in the language that can represent all the numbers

from -32768 to 32767.

 15

Each thinkGear model reports its raw wave information in only certain areas of the full -

32768 to 32767 range. For example, MindSet reports raw waves that fall between

approximately -2048 to 2047.

By default, output of this Data Value is enabled, and is outputed 512 times a second, or

approximately once every 2ms.

ASIC_EEG_POWER:

this Data Value represents the current magnitude of 8 commonly-recognized types of EEG

(brainwaves). this Data Value is output as a series of eight 3-byte unsigned integers in

little-endian format. the eight EEG powers are output in the following order: delta (0.5 -

2.75Hz), theta (3.5 - 6.75Hz), low-alpha (7.5 - 9.25Hz), high-alpha (10 - 11.75Hz), low-

beta (13 - 16.75Hz), high-beta (18 - 29.75Hz), low-gamma (31 - 39.75Hz), and mid-

gamma (41 - 49.75Hz). these values have no units and therefore are only meaningful

compared to each other and to themselves, to consider relative quantity and temporal

fluctuations. By default, output of this Data Value is enabled, and is typically output once a

second.

Blink Strength:

this unsigned one byte value reports the intensity of the user's most recent eye blink. Its

value ranges from 1 to 255 and it is reported whenever an eye blink is detected. the value

indicates the relative intensity of the blink, and has no units.

ThinkGear Packets:

thinkGear components deliver their digital data as an asynchronous serial stream of bytes.

the serial stream must be parsed and interpreted as thinkGear Packets in order to properly

extract and interpret the thinkGear Data Values described in the chapter above.

A thinkGear Packet is a packet format consisting of 3 parts:

1. Packet Header

2. Packet Payload

3. Payload Checksum

 16

thinkGear Packets are used to deliver Data Values (described in the previous chapter) from

a thinkGear module to an arbitrary receiver (a PC, another microprocessor, or any other

device that can receive a serial stream of bytes). Since serial I/O programming APIs are

different on every platform, operating system, and language, it is outside the scope of this

document (see your platform's documentation for serial I/O programming). this chapter

will only cover how to interpret the serial stream of bytes into thinkGear Packets,

Payloads, and finally into the meaningful Data Values described in the previous

chapter. the Packet format is designed primarily to be robust and flexible: Combined, the

Header and Checksum provide data stream synchronization and data integrity checks,

while the format of the Data Payload ensures that new data fields can be added to (or

existing data fields removed from) the Packet in the future without breaking any Packet

parsers in any existing applications/devices. this means that any application that

implements a thinkGear Packet parser properly will be able to use newer models of

thinkGear modules most likely without having to change their parsers or application at all,

even if the newer thinkGear hardware includes new data fields or rearranges the order of

the data fields.

Packet Structure:

Packets are sent as an asynchronous serial stream of bytes. the transport medium may be

UART, serial COM, USB, bluetooth, file, or any other mechanism which can stream bytes.

Each Packet begins with its Header, followed by its Data Payload, and ends with the

Payload's Checksum Byte, as follows:

[SYNC] [SYNC] [PLENGTH] [PAYLOAD...] [CHKSUM]

_______________________ _____________ ____________

^^^^^^^^(Header)^^^^^^^ ^^(Payload)^^ ^(Checksum)^

the [PAYLOAD…] section is allowed to be up to 169 bytes long, while each of [SYNC],

[PLENGTH], and [CHKSUM] are a single byte each. this means that a complete, valid

Packet is a minimum of 4 bytes long (possible if the Data Payload is zero bytes long, i.e.

empty) and a maximum of 173 bytes long (possible if the Data Payload is the maximum

169 bytes long).

 17

Packet Header:

the Header of a Packet consists of 3 bytes: two synchronization [SYNC] bytes (0xAA

0xAA), followed by a [PLENGTH] (Payload length) byte:

[SYNC] [SYNC] [PLENGTH]

^^^^^^^^(Header)^^^^^^^

the two [SYNC] bytes are used to signal the beginning of a new arriving Packet and are

bytes with the value 0xAA (decimal 170). Synchronization is two bytes long, instead of

only one, to reduce the chance that [SYNC] (0xAA) bytes occurring within the Packet

could be mistaken for the beginning of a Packet. Although it is still possible for two

consecutive [SYNC] bytes to appear within a Packet (leading to a parser attempting to

begin parsing the middle of a Packet as the beginning of a Packet) the [PLENGTH] and

[CHKSUM] combined ensure that such a "mis-sync'd Packet" will never be accidentally

interpreted as a valid packet (see Payload Checksum below for more details). the

[PLENGTH] byte indicates the length, in bytes, of the Packet's Data Payload

[PAYLOAD…] section, and may be any value from 0 up to 169. Any higher value

indicates an error (PLENGTH TOO LARGE). Be sure to note that [PLENGTH] is the

length of the Packet's Data Payload, NOT of the entire Packet. the Packet's complete

length will always be [PLENGTH] + 4.

Data Payload:

the Data Payload of a Packet is simply a series of bytes. the number of Data Payload bytes

in the Packet is given by the [PLENGTH] byte from the Packet Header. the interpretation

of the Data Payload bytes into the thinkGear Data Values is defined in detail in the Data

Payload Structure section below. Note that parsing of the Data Payload typically should

not even be

attempted until after the Payload Checksum Byte [CHKSUM] is verified as described in

the following

section.

 18

Payload Checksum

the [CHKSUM] Byte must be used to verify the integrity of the Packet's Data Payload. the

Payload's Checksum is defined as:

1. summing all the bytes of the Packet's Data Payload

2. taking the lowest 8 bits of the sum

3. performing the bit inverse (one's compliment inverse) on those lowest 8 bits

A receiver receiving a Packet must use those 3 steps to calculate the checksum for the Data

Payload they received, and then compare it to the [CHKSUM] Checksum Byte received

with the Packet. If the calculated payload checksum and received [CHKSUM] values do

not match, the entire Packet should be discarded as invalid. If they do match, then the

receiver may procede to parse the Data Payload as described in the "Data Payload

Structure" section below.

Setting Up Your MindSet

Figure 1-2 Overview of the MindSet

 19

Chapter 2 Arduino

Figure 2-1 Arduino

Arduino is an open source physical computing platform based on a simple input/output

(I/O) board and a development environment that implements the Processing language

(www.processing.org) . Arduino can be used to develop standalone interactive objects or

can be connected to software on your computer (such as Flash, Processing, VVVV, or

Max/MSP). The boards can be assembled by hand or purchased preassembled; the open

source IDE (Integrated Development Environment) can be downloaded for free from

www.arduino.cc.

Arduino is defferent from other platforms on the market because of these features:

» It is a multiplatform environment; it can run on Windows, Macintosh,

and Linux.

» It is based on the Processing programming IDE, an easy-to-use

development environment used by artists and designers.

» You program it via a USB cable, not a serial port. This feature is useful,

because many modern computers don’t have serial ports.

» It is open source hardware and software—if you wish, you can

download the circuit diagram, buy all the components, and make your

own, without paying anything to the makers of Arduino.

» The hardware is cheap. The USB board costs about €20 (currently,

about US$35) and replacing a burnt-out chip on the board is easy and

costs no more than €5 or US$4. So you can afford to make mistakes.

http://www.processing.org/
http://www.arduino.cc/

 20

» There is an active community of users, so there are plenty of people

who can help you.

» The Arduino Project was developed in an educational environment and

is therefore great for newcomers to get things working quickly.

After Arduino started to become popular, I realised how experimenters,

hobbyists, and hackers of all sorts were starting to use it to create beautiful

and crazy objects. I realised that you’re all artists and designers in

your own right, so this book is for you as well.

Arduino was born to teach Interaction Design, a design discipline that

puts prototyping at the centre of its methodology. There are many definitions

of Interaction Design, but the one that I prefer is:

Interaction Design is the design of any interactive experience:

In today’s world, Interaction Design is concerned with the creation of

meaningful experiences between us (humans) and objects. It is a good way to

explore the creation of beautiful—and maybe even controversial— experiences

between us and technology. Interaction Design encourages design through an

iterative process based on prototypes of ever-increasing fidelity. This

approach—also part of some types of “conventional” design—can be extended

to include prototyping with technology; in particular, prototyping with

electronics

The specific field of Interaction Design involved with Arduino is Physical

Computing (or Physical Interaction Design).

 21

What Is Physical Computing?

Physical Computing uses electronics to prototype new materials for

designers and artists.

It involves the design of interactive objects that can communicate with

humans using sensors and actuators controlled by a behaviour implemented

as software running inside a microcontroller (a small computer

on a single chip).

In the past, using electronics meant having to deal with engineers all the

time, and building circuits one small component at the time; these issues

kept creative people from playing around with the medium directly. Most

of the tools were meant for engineers and required extensive knowledge.

In recent years, microcontrollers have become cheaper and easier to use,

allowing the creation of better tools.

The progress that we have made with Arduino is to bring these tools one

step closer to the novice, allowing people to start building stuff after only

two or three days of a workshop.

With Arduino, a designer or artist can get to know the basics of electronics

and sensors very quickly and can start building prototypes with very little

investment.

 22

The Arduino Platform

Arduino is composed of two major parts:

1) Arduino board, which is the piece of hardware you work on when you build

your objects.

2) Arduino IDE, the piece of software you run on your computer. You use the

IDE to create a sketch (a little computer program) that you upload to the

Arduino board.

The sketch tells the board what to do Not too long ago, working on hardware

meant building circuits from scratch, using hundreds of different components

with strange names like resistor, capacitor, inductor, transistor, and so on.

Every circuit was “wired” to do one specific application, and making changes

required you to cut wires, solder connections, and more.

With the appearance of digital technologies and microprocessors, these

functions, which were once implemented with wires, were replaced by

software programs Software is easier to modify than hardware. With a few

keypresses, you can radically change the logic of a device and try two or three

versions in the same amount of time that it would take you to solder a couple of

resistors.

 23

.

The Arduino Hardware:

The Arduino board is a small microcontroller board,(which is a small circuit).

(the board that contains a whole computer on a small chip the microcontroller)

This computer is at least a thousand times less powerful than the MacBook I’m

using to write this, but it’s a lot cheaper and very useful to build interesting

devices. Look at the Arduino board: you’ll see a black chip with 28 “legs”—

that chip is the ATmega328, the heart of your board.

We (the Arduino team) have placed on this board all the components that

are required for this microcontroller to work properly and to communicate

with your computer. There are many versions of this board; the one we’ll

use throughout this book is the Arduino Uno, which is the simplest one to

use and the best one for learning on.

.

In those illustrations, you see the Arduino board. At first, all those connectors

might be a little confusing. Here is an explanation of what every

element of the board does:

 24

Digital I/O

Figure 2-2 Digital I/O Pins

•Input/Output (I/O) is done through pins.

•Input = read physical world data.

•Output = write data to the physical world.

•You insert a wire into a pin and connect it to something else.

•We can program a pin to be input OR output.

•Digital pins have two values: high (5 Volts) or low (0 Volt).

 25

Analog I/O

Figure 2-3 Analog I/O Pins

•Analog I/O has a range of numbers.

•Output : 0 ... 255 (256 voltage steps from 0 to 5V).

•Input: 0 ... 1023 (1024 voltage steps from 0 to 5V).

•Analog input pin: we can use it for example to determine the distance of an object via

infra-red sensor.

•Analog output pin: we can use it for example to set speed of a motor or the

brightness of a LED

 26

Pulse Width Modulation

Figure 2-4 Digital Pins with PWM

•Some digital ports can be programmed to output analog signals.

•We enable those ports for output with pulse width modulation (PWM).

•PWM is obtained by varying between HIGH and LOW at the appropriate interval of

time.

 27

Other board components

Figure 2-5 Other board components

 28

Arduino Uno specification

Figure 2-6 Arduino Uno specification

 29

Bootloader

Figure 2-7 Bootloader

Power pins

Figure 2-8 Power Pins

•VIN - You may provide a regulated input voltage to the Arduino board as opposed to 5

volts from the USB connection or other regulated power source.

•5V - When power is provided to the board, this pin has 5V (reference to GND pin)

•3V3 - A 3.3 volt supply generated by the on-board regulator (reference to GND pin).

Maximum current draw is 50 mA.

 30

Other pins

Figure 2-9 Other pins

•Digital Pin 2 and 3 can be used as external interrupts (trigger an interrupt on a low

value, a rising or falling edge, or a change in value).

•AREF - Reference voltage for the analog inputs.

•Reset - Bring this line LOW to reset the microcontroller.

 31

Polyfuse

Figure 2-10 Polyfuse

•What is that funny looking chip?

Figure 2-11 chip of Polyfuse

•Its a resettable polyfuse that protects your computer's USB ports from shorts and

overcurrent. If more than 500 mA is applied to the USB port, the fuse will automatically

break the connection.

 32

The Software (IDE)

The IDE (Integrated Development Environment) is a special program

running on your computer that allows you to write sketches for the

Arduino board in a simple language modeled after the Processing

(www.processing.org) language. The magic happens when you press

the button that uploads the sketch to the board: the code that you have

written is translated into the C language (which is generally quite hard for

a beginner to use), and is passed to the avr-gcc compiler, an important

piece of open source software that makes the final translation into the

language understood by the microcontroller. This last step is quite important,

because it’s where Arduino makes your life simple by hiding away as

much as possible of the complexities of programming microcontrollers.

Features of the Arduino (IDE) :

• Simple to use

• Open Source (Free)

• Programming style similar to C

• You can download it from www.arduino.cc

http://www.processing.org/
http://www.arduino.cc/

 33

The programming cycle on Arduino is basically as follows:

Figure 2-12 The programming cycle on Arduino

 34

Anatomy of a “sketch” :

Figure 2-13 Anatomy of a “sketch”

 35

Installing Arduino on Your Computer

To program the Arduino board :

 you must first download the development environment (the IDE) from here:

 www.arduino.cc/en/Main/Software.

 Choose the right version for your operating system.

 Download the file and double-click on it to open it ; on Windows or Linux,

 this creates a folder named arduino-[version], such as arduino-1.0.

 Drag the folder to wherever you want it: your desktop, your Program Files

 folder (on Windows), etc. On the Mac, double-clicking it will open a disk

 image with an Arduino application (drag it to your Applications folder).

 Now whenever you want to run the Arduino IDE, you’ll open up the arduino

 (Windows and Linux) or Applications folder (Mac), and double-click the

 Arduino icon. Don’t do this yet, though; there is one more step.

 Now you must install the drivers that allow your computer to talk to your

 board through the USB port.

Installing Drivers: Macintosh

 The Arduino Uno on a Mac uses the drivers provided by the operating system,

 so the procedure is quite simple. Plug the board into your computer.

 The PWR light on the board should come on and the yellow LED labelled “L”

 should start blinking.

 You might see a popup window telling you that a new network interface

 has been detected.

 If that happens, Click “Network Preferences...”, and when it opens, click

 “Apply”. The Uno will show up as “Not Configured”, but it’s working properly.

 Quit System Preferences.

If you have an older Arduino board, look for instructions here:

www.arduino.cc/en/Guide/MacOSX.

http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Guide/MacOSX

 36

Installing Drivers: Windows

 Plug the Arduino board into the computer; when the Found New Hardware

 Wizard window comes up, Windows will first try to find the driver on

 the Windows Update site.

 Windows XP will ask you whether to check Windows Update; if you don’t

 want to use Windows Update, select the “No, not at this time” option and

 click Next.

 On the next screen, choose “Install from a list or specific location” and

 click Next.

 Navigate to and select the Uno’s driver file, named ArduinoUNO.inf,

 located in the “Drivers” folder of the Arduino Software download (not

 the “FTDI USB Drivers” sub-directory). Windows will finish up the driver

 installation from there.

If you have an older board, look for instructions here:

 www.arduino.cc/en/Guide/Windows.

Once the drivers are installed, you can launch the Arduino IDE and start

using Arduino.

.

http://www.arduino.cc/en/Guide/Windows

 37

Sensors and Actuators

Sensors and actuators are electronic components that allow a piece of

electronics to interact with the world.

As the microcontroller is a very simple computer, it can process only

electric signals (a bit like the electric pulses that are sent between neurons

in our brains). For it to sense light, temperature, or other physical quantities,

it needs something that can convert them into electricity. In our body, for

example, the eye converts light into signals that get sent to the brain using

nerves. In electronics, we can use a simple device called a light-dependent

resistor (an LDR or photoresistor) that can measure the amount of light

that hits it and report it as a signal that can be understood by the microcontroller.

Once the sensors have been read, the device has the information needed

to decide how to react. The decision-making process is handled by the

microcontroller, and the reaction is performed by actuators. In our bodies,

for example, muscles receive electric signals from the brain and convert

them into a movement. In the electronic world, these functions could be

performed by a light or an electric motor.

In the following sections, you will learn how to read sensors of different

types and control different kinds of actuators.

 38

Chapter 3 Building the Robot

Before programming anything, we'll build the chassis for the robot. Basically

it's a traditional rover robot structure with four dc motors . To make it suitable for mind-

controlling needs, we'll

add a line detector and motor driver kit to communicate the motors with arduino. We use a

solder less breadboard

and Bluetooth shield for the Arduino, to make the system full wireless and communicate

the ardunio with Neruosky by Bluetooth .We can adding components and wirers easy to

arduino after we put the Bluetooth shield.

Here’s how all the major components will work together to create a working robot:

Arduino:

This is the brains of the project. It is essentially a small embedded computer

With a brain (a microcontroller), as well as header pins that can

Connect to inputs (sensors) and outputs (actuators).

4WD Chassis:

This holds everything together. It’s essentially the platform for the

Robot.

Motors:

These are motors that can be connected to (Motor Driver FD04A) and then connect the

motor driver to the Arduino. Arduino communicates with them by sending pulses to

control speed and direction.

Motor Driver kit:

This kit used to connect the 4 dc motors with arduino to communicate the speed and

direction.

Line Detector:

 39

With the line detector, your robot will avoid a black line, which makes it

stay in the arena (helpful for keeping it from falling off a table).

Mind Wave:

Mind Wave measures your brainwaves and transmits the results for the

Arduino. We have to add a Bluetooth shield to connect the arduino with Mind wave by

Bluetooth dongle. We want to connect it directly to Arduino instead of a computer’s USB

port.

Tools and Parts

Here we list the parts and tools needed to make the robot. Feel free to improvise

if you don’t find the exact matches.

Figure 3-1 shows the parts & tools of the robot

 40

1. Rechargeable battery (we used a 4 AA battery enercell 2500mAh 4.8v).

2. Vanson compact charger for the battery.

3. Chargable battery Energizer 5000mAh 9v for the motor driver kit.

4. Battery holder for Energizer 9v.

5. Nerousky Mind wave.

6. Line-detecting sensor.

7. Connection wire for the line-detecting sensor.

8. Small solderless breadboard.

9. Arduino Uno.

10. Motor driver 4 channel (we used Flexibot Driver FD04A).

11. Bluetooth shield for Arduino.

12. Ribbon cable or assorted wire in four different colors.

13. Jumpers Wires.

14. Battery holder tie rap.

The 4WD Chassis parts:

Figure 3-2 Chassis part list

 41

1. Chassis-up 1 pc.

2. Chassis-down 1 pc.

3. Gearbox holder 8 pcs.

4. Gearbox 4 pcs (DC motors).

5. Wheel 4 pcs.

6. 4X AA battery holder 1 pc.

7. L30 spacer 4 pcs.

8. M2.5*25 screw 8pcs.

9. M 2.5 nut 8 pcs.

10. M3 nut 8 pcs (4 pcs spare part).

11. M 3*6 screw 8 pcs (4 pcs spare part).

12. M3*6 spacer 4 pcs (spare part).

Tools:

Figure 3-3 Tools

 42

1. Scissors.

2. Soldering iron and solder.

3. Pliers.

4. Phillips screwdriver.

5. Marker.

6. Torch or lighter.

7. Diagonal cutter pliers.

8.Avometer.

Gearbox dc motor:

Dc motor motors will be moving the wheels of our robot. The most

usual type of Dc motors have limited rotation. They are used when you need to

turn the motor to a specific angle. In our robot, we only need to control speed

and direction. And, of course, the motor needs to be able to turn freely.

Continuous

rotation Dc motors are made for this. Almost any Dc motor can be modified

to continuous rotation, but it’s easier to buy a ready-made version.

The Parallax (Futaba) continuous rotation Dc motor is perfect for our needs.

 has an external potentiometer adjustment screw, which allows identical It

centering of two Dc motors effortlessly. You’ll notice how handy this is later

when we program the movements for the robot.

 43

Chassis:

Now we will implement the main body of the robot the chassis it's easy tom

implement it just follow the instruction below and read it carefully.

Step 1:

Figure 3-4 Assembly instruction

 44

Step2:

Figure

3-5 Assembly instruction

Now we can use the Soldering iron to solder the dc motor and jumpers because

you need to connect the dc motor with motor driver like figure below.

Figure 3-6 Soldering the wires with dc motor

 45

Step3:

Figure 3-7 Assembly the gear box

 46

Step 4: Assemble the wheel with dc motor and soldering each one with jumpers like figure

below:

Figure 3-8 assemble the wheel

Step 5: assembly the chassis up to put the kit & shields over it :

Figure 3-9 assemble the chassis up

 47

Finally, we finished from implemented the chassis of the robot the next task now we want

to put every part of the hardware above the chassis and connect it with each other to start

the movement.

Attaching Arduino:

Before attaching the Arduino to the robot, cover the bottom of the Arduino with

a tie rap to attach it with upper chassis but be carefully from the short circuits that

could happen if the Arduino touched metal parts of the boot. We put the arduino in the

center of the upper chassis of the robot.

Figure 3-10 attach the arduino over the upper chassis

 48

Attaching Solderless Breadboard:

Remove the adhesive cover from the bottom of the breadboard and stick it in the

Backward of the upper chassis robot.

Figure 3-11 attaching the breadboard

Battery Holder:

Use a battery holder tie rap to stick the battery holder in the center of upper chassis

beside the arduino.

Figure 3-12 the battery holder

 49

Attaching the motor driver:

Use 2 of M 3*6 screws to stick the driver over M 3*6 spacer located in the upper chassis it

will be the front of the robot.

Now we finish from implement and put the main parts of the hardware in the robot.

Figure 3-13 the robot after put the hardware parts

 50

The main question now is:

Q: How I can connect all these parts to make the robot move?

A: We must read the data sheet for every kit and study it well to decide how I can

connect the kits with each other.

Let us start with the motor driver to decide how we will connect it with arduino the arduino

will send the pulses to the motor driver and the driver will control the dc motor. Now we

will see the specification of the pin connection of the motor driver by the figure below and

the table.

Figure 3-14 show the pin orientation

 51

The function of each pin is described as below:

Function Name No.

Motor 1 pin 1 Pin 1 1

Motor 1 speed control Pin 2 2

Motor 1 pin 2 Pin 3 3

Motor 2 pin 1 Pin 4 4

Motor 2 speed control Pin 5 5

Motor 2 pin 2 Pin 6 6

Motor 3 pin 1 Pin 7 7

Motor 3 speed control Pin 8 8

Motor 3 pin 2 Pin 9 9

Motor 4 pin 1 Pin 10 10

Motor 4 speed control Pin 11 11

Motor 4 pin 2 Pin 12 12

5V Pin 13 13

GND Pin 14 14

Figure 3- 15 the function of pin

Referring to Figure 3- 15, there are 4 channels of FD04A and each channel has 3 control

pins, which are pin 1, pin 2 and speed control. Pin 1 and pin 2 of each channel control the

motor activation and direction, while speed control should be given the PWM if speed is

needed. If speed is not necessary, the speed control pin is connecting to 5V. The motor will

run with full speed.

Pin 1 Pin 2 Motor state

0 0 Brake to Ground

0 1 CW (relative)

1 0 CCW (relative)

1 1 Brake to V motor

Figure 3-16 True tables for pin 1 and pin 2

 52

Lets connect the powe to the motor driver by using the Energizer 9v battery because the

max power in the driver = 26 v and the I max = 3 A.

Note: This Imax is limited by on board 3A fuse, changing the value of fuse will

increase the Imax. However, it will not protect individual H-bridge.

Now you can connect the positive wire from the battery holder in the + pin in the channel

and the negative wire in the GND pin in the same channel.

The final step to connect the motor with the channel in the driver let us make convention

the driver will be in the front of the robotic car and the left side will be the motor no.1 and

motor no.2 , so the right side will be the motor 3 and motor 4.

But wich one will take the Clock Wise move and the other will take the inverse because it

is the basics of mechanic we haven't an axis for each 2 motor every motor is individual so

we will chose the left side will move clock wise so we make the negative wire from motor

1 and 2 in the pin CW and the right hand side is the inverse as shown in figure below.

Figure 3-17 the connection of motors and the power

 53

The next step now is to connect the arduino with the motor driver after we revise the last

information about the pin orientation and the true table of the pin of each motor we decide

to make the motor control speed of all motors is common in the arduino pin we will use the

white board to connect the motors pin and the motor speed control.

The figure below shows the connection between arduino and the motor.

The Figure 3-18 Connect arduino with motor driver pins

To control the left side of motors (M1 and M2) by the true table to decide if the motion of

the wheels of motors (M1 and M2) will take Clock wise direction or Counter-clockwise by

Pin 1 and pin 2 for each motor (M1 and M 2), then you can send the pulses of the speed by

PWM so we can make the PWM is common for motor (M1 and M 2) likes the pins 1 and

2.

By the same way for the Right side of the motors (M3 and M4) but take care if we chose

the direction of the left side of the robot is Clock wise we chose in the right side (Counter-

 54

clockwise) and the inverse is almost right. This is a mechanical basic of the motion of the

wheels.

Bluetooth shield:

The Bluetooth shield can be implement above over the ardunio pins and the arduino pins

has a position in the kit of the Bluetooth the figure below is describe this step.

And all the connection between the arduino and the motor driver is the same we don’t

change anything of the connection wires and jumpers.

After that you can run the Bluetooth but you must increment the data or the code to the

arduino by the USB cable and then you make a configuration of the Bluetooth and enjoy

the communication wireless.

Figure 3-19 belts Bluetooth with arduino

 55

Chapter 4 the software (Coding)

The Arduino IDE:

const int m1p1 =0;

const int m1p3 =1;

const int m3p1 =8;

const int m3p3 =9;

const int pwm =3;

int middetector = 13;

int rigdetector = 12;

int lefdetector = 11;

int speed =100;

int turn_speed=255;

In the first 2 commands we define ((initialize)) the pin of the motor 1 and motor 2 for

arduino so we chose the pin no. 0 for the pin no 1, and pin no.1 in arduino for pin 3 for the

motors. ((we make the motor 1 and motor 2 common in the connection between the

arduino and the driver)).

In the second 2 commands we define ((initialize)) the pin of the motor 3 and motor 4 for

arduino so we chose the pin no. 8 for the pin no 1, and pin no.9 in arduino for pin 3 for the

motors. ((we make the motor 1 and motor 2 common in the connection between the

arduino and the driver)).

In the third command we define ((initialize)) the pin 2 for each motors((M1 and M2 and

M3 and M4)) in pin 3 in the arduino.

To define the line detection pin we use three line so we define everyone in each pin as we

write in the code up.

The speed here is about 2 command one for the initialize the speed as 100 and when the

robot need to turn to the left or to the right we use the turn speed (max speed) .

 56

#include <SoftwareSerial.h> //Software Serial Port

 define RxD 6#

 # define TxD 7

 # define DEBUG_ENABLED 1

SoftwareSerial blueToothSerial(RxD,TxD);

Configuration of Bluetooth shield and the library used to define the shield this code is a

formal or standard from the data sheet of the Bluetooth shield to define it in the software.

void setup()

{

pinMode(m1p1, OUTPUT);

pinMode(m1p3, OUTPUT);

pinMode(pwm1, OUTPUT);

pinMode(m3p1, OUTPUT);

pinMode(m3p3, OUTPUT);

pinMode(RxD, INPUT)

pinMode(TxD, OUTPUT)

pinMode(middetector, INPUT);

pinMode(rigdetector, INPUT);

pinMode(lefdetector, INPUT);

setupBlueToothConnection()

}

Let's take the commands and analysis it and to define every pin as input or output in our

system :

pinMode(m1p1, OUTPUT);

pinMode(m1p3, OUTPUT);

In the first command we define the pin mode for motor 1and 2 pin 1 as output.

And the second is the same but for the pin 3 for each motor 1 and 2.

pinMode(pwm1, OUTPUT);

In this command we define the pin mode of the PWM as output.

pinMode(m3p1, OUTPUT);

 57

pinMode(m3p3, OUTPUT);

the same for motor 3 and 4 we define the mode for each pin in the first command we

define the pin 1 for the 2 motors as output.

And the second command we define the pin 3 for each 2 motors .

pinMode(RxD, INPUT)

pinMode(TxD, OUTPUT)

the pin mode for a Receiver for Bluetooth shield as input.

And the transmitter of the Bluetooth shield as output.

pinMode(middetector, INPUT);

pinMode(rigdetector, INPUT);

pinMode(lefdetector, INPUT);

Three line detector every on is connected in the pin in the arduino and it used as an input .

setupBlueToothConnection()

The starting of Bluetooth shield to work .

We make a function to make the robot move so we need 5 functions, Now observe with

every function and how it works :

void Move_Foreword ()

{

digitalWrite(m1p1, LOW);

digitalWrite(m1p3, HIGH);

digitalWrite(m3p1, LOW);

digitalWrite(m3p3, HIGH);

 }

The name of the function is move forward so we will control the 4 wheels to move

forward.

In the first two commands we chose the pulse of the pin 1 and pin 3 for the motor 1 and

motor 2 the pin 1 is low as zero and the pin 3 is high as one so the direction will be a

clock-wise.

 58

For the second two commands we chose the same and the movement is will be counter

clock-wise because the wire of right side is connected the inverse of the wire of the left

side so the pulse is the same .

void Move_Backword()

{

digitalWrite(m1p1, HIGH);

digitalWrite(m1p3, LOW);

digitalWrite(m3p1, HIGH);

digitalWrite(m3p3, LOW);

}

The second function is move backward if you read it carefully it will appear to you the

inverse of the function of move forward.

void Move_Right()

{

digitalWrite(m1p1, LOW)

digitalWrite(m1p3, HIGH)

digitalWrite(m3p1, HIGH)

digitalWrite(m3p3, LOW)

}

The third function is to make the robot move to the right so the left side (motor 1 and 2) is

take the pulse low for pin 1 and high for pin 3the the movement will be counter clock wise.

The right side will be the inverse and the movement will be clock wise so the robot will

make the left side as a centre of mass and move around it to move to the right .

void Move_Left()

{

digitalWrite(m1p1, HIGH);

digitalWrite(m1p3, LOW);

digitalWrite(m3p1, LOW);

digitalWrite(m3p3, HIGH);

}

 59

This function is move to the left if you observe with me it is the inverse of the function of

move right we make the right side as a centre of mass for the robot and the left side move

inverse of it.

void stop()

{

digitalWrite(m1p1, LOW);

digitalWrite(m1p3, LOW);

digitalWrite(m3p1, LOW);

digitalWrite(m3p3, LOW);

}

The last function we make it to stop the robot and the command is clearly we make all the

pin has a low pulse to make the wheel stoped.

void setupBlueToothConnection()

{

 blueToothSerial.begin(38400); //Set BluetoothBee BaudRate to default baud rate 38400

 blueToothSerial.print("\r\n+STWMOD=0\r\n"); //set the bluetooth work in slave mode

 blueToothSerial.print("\r\n+STNA=SeeedBTSlave\r\n"); //set the bluetooth name as

"SeeedBTSlave"

 blueToothSerial.print("\r\n+STOAUT=1\r\n"); // Permit Paired device to connect me

 blueToothSerial.print("\r\n+STAUTO=0\r\n"); // Auto-connection should be forbidden

here

 delay(2000); // This delay is required.

 blueToothSerial.print("\r\n+INQ=1\r\n"); //make the slave bluetooth inquirable

Serial.println("The slave bluetooth is inquirable !");

 delay(2000); // This delay is required.

 blueToothSerial.flush();

}

The code up is taken from the Bluetooth shield data sheet to complete the configure of the

Bluetooth device .

The main(Loop) now is :

void loop()

{

 60

 int recvChar ;

 if(blueToothSerial.available())

 { //check if there's any data sent from the remote bluetooth shield

 recvChar = blueToothSerial.read)(

 if(recvChar= ='s') speed =100;

 else if(recvChar= ='m') speed =120;

 else if(recvChar= ='h') speed =150;

 }

 analogWrite(pwm1,speed);

 while(HIGH = = digitalRead(middetector))

 {

 Move_Foreword();

 analogWrite(pwm1,speed);

 }

 Stop();

 while(HIGH = = digitalRead(rigdetector))

 {

 Move_Right();

 analogWrite(pwm1,turn_speed);

 }

 Stop();

 while(HIGH == digitalRead(lefdetector))

 {

 Move_Left();

 analogWrite(pwm1,turn_speed);

 }

 Stop();

//}

}

To understand now the main loop of the arduino

we want to make the robot read the characters of the Bluetooth and send it to the arduino

then the Bluetooth receive and read and begin as a serial port.

 61

To control the speed of the Neruosky we divide the speed into 3 parts small(S),

Medium (m) and high (h) when the arduino receive the characters the wheel will take the

speed that's changed by the attention ratio readied by the nerusky.

The default or the initialize speed will begin as we make it 100 and we write the command

analogwrite (pwm,speed); to start the default motion of the robot.

The robot needed to turn to the left or to the right , the line detector can do this mission by

reading the line sector in the terminal we put the robot on it.So we use the while loop to

make the robot turn if the middle line detector read black (High) the robot will move

forward and if the sensor read wait the robot will stop, then the left line detector and the

right one will begin to start to check if the line is below on of them it will move to the right

or to he left and if any one of the left or the right not read the black (High) it will stopby

the function stop and the others will check if the line below one of them to take the

function to move .

 62

The C # Code and the Interface of the system :

Figure 4-1 the interface of the software

When the software is start in the first we need to manually configure the Bluetooth of the

arduino and the dongle of the nerousky to select the port of the Bluetooth dongle of the

Neruosky then we click connect to go to the second panel the brain signals to start show

the brain signals shown in the figure belwo.

 63

Figure 4-2 the interface of the brain signals and attention ratio

Now in this figure we have the interface of the brain signal and the attention ratio we use it

as the speed in our project .

The Code of the C#:

We must copy the file of the the thinkgear.dll in the debug folder of the project to use the

Neruosky packet and library.

From Nerusky Library we get the Class ThinkGearWrapper

And after that we can call any object in this class in our interface we use the pref chart to

show the brain signals.

The library we added in the project is :

 64

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using ThinkGearNET;

using System.IO.Ports;

using System.IO;

using System.Threading;

Now we must make a timer or trigger to select the delay that take the new value of the

neruo sky after that we can read every value from the packet and make any interface you

want to show to the user.

private void timer1_Tick(object sender, EventArgs e)

 {

lalpha.AddValue(Convert.ToDecimal(_thinkGearWrapper.ThinkGearState.Alpha1));

theta.AddValue(Convert.ToDecimal(_thinkGearWrapper.ThinkGearState.Theta));

halpha.AddValue(Convert.ToDecimal(_thinkGearWrapper.ThinkGearState.Alpha2));

 lbeta.AddValue(Convert.ToDecimal(_thinkGearWrapper.ThinkGearState.Beta1));

 hbeta.AddValue(Convert.ToDecimal(_thinkGearWrapper.ThinkGearState.Beta2));

lgamma.AddValue(Convert.ToDecimal(_thinkGearWrapper.ThinkGearState.Gamma1));

hgamma.AddValue(Convert.ToDecimal(_thinkGearWrapper.ThinkGearState.Gamma2));

att.Text ="Attention :"+ _thinkGearWrapper.ThinkGearState.Attention.ToString();

med.Text = "Meditation :" + _thinkGearWrapper.ThinkGearState.Meditation.ToString();

blink.Text = "Blink St :" + _thinkGearWrapper.ThinkGearState.BlinkStrength.ToString();

 65

 atten += _thinkGearWrapper.ThinkGearState.Attention;

 mede += _thinkGearWrapper.ThinkGearState.Meditation;

 bl += _thinkGearWrapper.ThinkGearState.BlinkStrength;

 }

The next step now is to select the ratio of the attention and divide it int 3 parts small(S),

Medium (m) and high (h) to decide the speed of the wheel and .

if (_thinkGearWrapper.ThinkGearState.Attention > 0 &&

_thinkGearWrapper.ThinkGearState.Attention < 30)

 {

 arduino.Write("s");

 }

 else if (_thinkGearWrapper.ThinkGearState.Attention > 30 &&

 _thinkGearWrapper.ThinkGearState.Attention < 70)

 {

 arduino.Write("m");

 }

else if (_thinkGearWrapper.ThinkGearState.Attention > 70 &&

 _thinkGearWrapper.ThinkGearState.Attention < 100)

 {

 arduino.Write("h");

 }

 66

Conclusion and future work:

In the educational uses:

 In this project we can use a voice recognition to send the function of movement by

speech and use Neruosky to control the speed.

 Use the Emotive EBook to control the directions of the robot by using malty sensors to

make all the directions and the speed by the brain signals .

 Use the brain computer interface to control the robotic Arm by Neruosky or

Emotive EBook.

In the entertainment uses:

 Make an intelligence video games

 By using malty sensors you can make a brain browser.

 67

References:

Books:

 M. Benzi, "Getting started with Arduino", O'Reilly, 2009.

 T.Karvinen,K.Karvinen, "Make a Mind-Controlled Arduino Robot", O'Reilly, 2012

 A.Stellman, J.Greene, " Head First C# ", O'Reilly,2010.

 M.Kurz, W.Almer, F.Landolt, "Brain Computer Interface" , 2006.

 Flexibot Driver User’s Manual Prepared by Cytron Technologies Sdn. Bhd.

19, Jalan Kebudayaan 1A,

 "Arduino basic C review", Nuno Alves college of Engineering,

Western New England University.

 K.Crowley, A.Sliney, I.Pitt, D.Murphy," Evaluating a Brain-Computer Interface to

Categorise Human Emotional Response", IEEE, 2010

 Kristín Guðmundsdóttir,"Improving Players' Control Over The NeuroSky Brain

Computer-Interface",School of Computer Science,2011

Websites:

 www.arduino.cc

 http://www.neurosky.com/

 http://www.oreilly.com.

 http://my.safaribooksonline.com./

 http://en.wikipedia.org/wiki/Brain%E2%80%93computer_interface#EEG

 http://www.seeedstudio.com/wiki/Grove_-_Line_Finder

 http://www.seeedstudio.com/wiki/Grove_-_Serial_Bluetooth

 http://www.electrical-neuroimaging.ch/publications/grave_esann2009.pdf

http://shop.oreilly.com/product/0636920000679.do?CMP=ILC-hf1st#tab_03
http://www.arduino.cc/
http://www.neurosky.com/
http://www.oreilly.com/
http://my.safaribooksonline.com./
http://en.wikipedia.org/wiki/Brain%E2%80%93computer_interface#EEG
http://www.seeedstudio.com/wiki/Grove_-_Line_Finder
http://www.seeedstudio.com/wiki/Grove_-_Serial_Bluetooth
http://www.electrical-neuroimaging.ch/publications/grave_esann2009.pdf

