

DOUBLE DEGREE PROGRAM IN
INFORMATION AND COMMUNICATION TECHNOLOGIES

ENGINEERING

GRADUATION PROJECT REPORT

AUTOMATED METRO GUIDANCE

SYSTEM

Advisers

Dr. Alaa Hamdy
Dr. Claudio Fornaro

Students

Amr Hassan
Mohamed Essam El Din
Mohamed Abdelrazek
Moamen Mahmoud

Academic year 2011/12

Document revision number: 1.2

2

TABLE OF CONTENTS
Summary .. 7

The Current Situation ... 8

The Proposed Solution ... 9

Introduction ... 11

Hardware Design Problems ... 13

A Train Needs to Be Able to Determine its Location ... 14

A Train Needs to Be Able to Determine its Location Underground 15

A Train Needs to Determine Which Track it is On Precisely .. 16

A Train Needs to Determine When People Stopped Going in and Out so That it would

close the Doors ... 17

A Train Needs to Actuate the Incoming Driving Instructions from the Control Server ... 17

Emergency Situations Should Be Allowed to Be Reported By the Passengers 18

A Train Needs a Master Computer System .. 18

Railway Tracks Need to Be Switched Frequently ... 19

Control Room Operators Will Need a Way to Monitor the Railway Network 19

Trains, Railway Monitors, Railway Switching Booths Need to Communicate with the

Central Control Server .. 20

Hardware System Components ... 21

The GPS Receiver.. 22

The UGPS .. 23

The TrackID Emitter.. 24

The TrackID Receiver .. 24

The Train Door Photo-sensor ... 24

The Emergency Button ... 25

3

The Train Controlling Actuators ... 25

The Train On-board Computer ... 26

The Railway Switching Hubs ... 26

Software Design Problems ... 28

Choosing the Software Platform for Building the Control Server 29

The Structuring of a Railway Layout in a Computer Software Memory 29

RailwayEntity .. 30

Trackpoint ... 30

Segment (inherits RailwayEntity) ... 30

ConjunctionSegment (inherits RailwayEntity) .. 30

Station (inherits RailwayEntity) .. 31

The Generation of Unique Ids .. 31

The Serialization of a Mapped-out Railway Layout ... 32

The Painting of a Railway Layout on a Computer Terminal Screen 35

Mapping Out the Railway Tracks ... 36

Other Objects that are Under the Control of the Control Server 36

Train .. 36

SwitchingHub .. 37

The General Communication Protocol between System Nodes and the Central Control

Server ... 38

The Client Identification Stage ... 39

Securing the Communication between the Trains and the Central Control Server 41

The Role of Public-key Cryptography ... 41

The Role of Secret-key Cryptography ... 42

The Authentication Stage in the General Communication Protocol 42

The Conversation Communication Stage ... 43

4

The Encrypted Message Format ... 43

The Compressed Communication Message Format .. 43

The Variable-Length Message Format ... 44

The Fixed-Length Message Format .. 45

The Communication Protocol with a Train Client .. 45

Client Messages .. 45

Server Messages ... 47

The Communication Protocol with a Switching Hub ... 48

Server Messages ... 48

Client Messages .. 49

The Communication Protocol with a Monitoring Station .. 49

Request/Response Message Pairs .. 50

The Communication Protocol with a Controlling Station .. 50

Request/Response Message Pairs .. 51

Software System Components .. 53

The Control Server Software .. 54

Objectives ... 54

Platform .. 54

Connectivity .. 54

Human Interface ... 54

Installation and Usage .. 54

The Monitoring/Controlling Software ... 55

Objectives ... 55

Platform .. 55

Connectivity .. 55

Human Interface ... 55

5

Installation and Usage .. 55

The Schematic Editor ... 56

Objectives ... 56

Platform .. 56

Connectivity .. 56

Human Interface ... 56

Installation and Usage .. 56

Technologies Used ... 63

The Java Runtime Environment ... 64

Java 2D ... 65

Basic Concepts .. 65

Advanced Objects ... 66

GPS ... 67

Trilateration .. 68

Photoelectric Sensors ... 69

Types ... 69

Sensing modes .. 70

Transmission Control Protocol (TCP) ... 71

Network function.. 71

IP Networking ... 73

Function .. 73

Public-key cryptography ... 73

How it works ... 75

The RSA Algorithm ... 76

Operation .. 76

Encryption ... 77

6

Decryption .. 78

Secret-key Cryptography .. 78

Types of symmetric-key algorithms ... 78

Implementations .. 79

Bibliography ... 80

Document Revision History ... 82

1.1 ... 83

1.2 ... 83

7

SUMMARY

8

The Current Situation

Currently, the entirety of the Metro railway system depends inefficiently on extensive

human intervention. From conducting the individual trains to actually locating the

conducted train and its neighboring trains.

Human conductors communicate with other conductors and station operators via a

primitive audio communication system on which they receive instructions and report

back their locations.

Given the close proximity of the train stops, and the large number of trains near each

other on the same railroad, the human conductor tends to almost always be either

accelerating or decelerating the train, depending on how near it is from the previous and

next stops and the trains ahead and behind it.

The conductors have no way of knowing their exact coordinates but by looking at signs on

the rails and at the familiar landscape. In times when weather conditions present viewing

obstacles like heavy rain or fog, the distinction of the current location and that of the

train ahead becomes very difficult (if not impossible), and the whole system comes to a

near halt or to a catastrophe.

At train stops, the train conductors look at giant mirrors or monitors placed conveniently

next to tank locomotive to give them full view of the doors and let them know when

people are done getting in and out so they could shut the doors and take off.

9

The Proposed Solution

A more efficient system of conducting would eliminate the dependence on using human

sight to locate the trains, and instead, would use a more modern and accurate location

triangulation system that isn't affected by weather and other obstacles.

The location of all trains would be reported via a combination of wireless and wired data

networks to the central offices and to station operators so that a clear view of the entire

railroad and the trains on it is easily obtained and better steering decisions are made.

A central computer system would use the location data from all trains for finding the

most efficient and safe steering instructions for every train and send them back on the

same wireless network.

A terminal at the conducting booth would use actuators to realize these steering

instructions without the actual intervention of any human being.

Sensors at each train door would decide when people stopped going in and out and

automatically shut the doors most safely.

The proposed plan adds a lot more efficiency and manageability to the system and

excludes the ever-present error factors resulting from relying on humans to do mundane

jobs.

10

The Control Server

 Train A Train B Train C

Switching Hub I

Switching Hub II

Monitoring/Controlling

Station

11

INTRODUCTION

12

Introduction

In the rest of this report, we shall explain the design problems that faced us while

realizing the project, followed by a detailed description of each component of the system.

Since our project is mainly about the software side of this system, we don't go into much

details about how the hardware components do what they are supposed to do, instead

we try to break them down into as many sub-components as possible and describe how

each of those sub-components are supposed to function in as much detail as possible so

as to ease the problem of building it on the hardware engineer.

The contributions made by each team member:

Moamen Mahmoud Technologies Used

Mohamed Abdelrazek Hardware Design Problems

Amr Hassan Software Design Problems

Mohamed Essam
Software System Components

Hardware System Components

13

HARDWARE DESIGN PROBLEMS

14

A Train Needs to Be Able to Determine its Location

Several solutions already exist for the problem of electronically determining one's

location. We've decided to use an already tried-and-true method for the most reliability;

thus, the Global Positioning System was our method of choice.

GPS is a space-based satellite navigation system that provides location and time

information in all weather, anywhere on or near the Earth, where there is an

unobstructed line of sight to four or more GPS satellites. It is maintained by the United

States government and is freely accessible to anyone with a GPS receiver.

GPS is back-boned by a

constellation of 27 Earth-orbiting

satellites (24 in operation and three

extras in case one fails). Each of

these 3,000- to 4,000-pound solar-

powered satellites circles the globe

at about 12,000 miles (19,300 km),

making two complete rotations

every day. The orbits are arranged

so that at anytime, anywhere on

Earth, there are at least four

satellites "visible" in the sky. A GPS

receiver's job is to locate four or

more of these satellites, figure out the distance to each, and use this information to

deduce its own location. This operation is based on a simple mathematical principle called

trilateration.

The GPS system guarantees a positioning accuracy of 7.8 meters at a 95% confidence

level. The actual accuracy depends on factors including atmospheric effects and receiver

quality. Real-world data show that some high-quality GPS receivers currently provide

better than 3 meter horizontal accuracy1, which is very adequate for our use-case here.

1 http://www.gps.gov/systems/gps/performance/accuracy/

http://www.gps.gov/systems/gps/performance/accuracy/

15

A Train Needs to Be Able to Determine its Location

Underground

The only problem with regular GPS in our project is that Metro trains spend about third of

its time in underground tunnels, and GPS – by design -

cannot be used underground because the ground dirt

hinders the propagation of the GPS radio signals.

In 2004, researchers from the Swiss Institute of

Speleology and Karstology (ISSKA2) were working on a

system for underground positioning, and in 2010 a

commercial company named InfraSurvey3 was

established to sell the product of that research.

The Underground GPS (UGPS) sold by InfraSurvey

consists of:

• An underground mobile emitter

• Four receivers stationed at fixed positions on the surface

• A radio link connecting the surface-mounted receivers and a computer.

2 http://www.isska.ch
3 http://www.infrasurvey.ch/?lang=en/

http://www.isska.ch/
http://www.infrasurvey.ch/?lang=en/

16

It works as follows:

The UGPS uses an induced magnetic field created by the underground emitter, which is

detected and analysed by four receiver stations at the surface. The receivers are static

and positioned automatically by GPS. They communicate by a radio link with a surface

computer system. The subsurface position and orientation of the emitter can be figured

out by software on the computer system on the surface.

A Train Needs to Determine Which Track it is On

Precisely

Since that railway roads usually go in pairs that are very close to each other, one for

coming trains and one for going ones, GPS may not be accurate enough to determine

which railway track the train is actually on.

Therefore a way of identifying the certain track beneath the train is needed. Such a way

could be a tiny close-range radio transmitter attached to every railroad track segment,

17

emitting the unique id of that track segment so that trains that are passing over it can

pick it up using a close-range radio receiver attached to the bottom of every train tank

locomotive.

A Train Needs to Determine When People Stopped

Going in and Out so That it would close the Doors

Simple photoelectric sensors installed at each door could easily tell if there is movement

at the door area, which would mean that people are still going in and out.

A photoelectric sensor, or photoeye, is a device used to detect the distance, absence, or

presence of an object by using a light transmitter, often infrared, and a photoelectric

receiver. There are three different functional types: opposed (through beam),

retroreflective, and proximity-sensing (diffused).4

A Train Needs to Actuate the Incoming Driving

Instructions from the Control Server

This is the part of the system that has to deal with actually delivering the actuating signals

to the train locomotives. Since it will probably be difficult to realize, we minimized the

what is actually needed from the actuating system component to very primitive simple

commands that include:

• Accelerating the train

• Decelerating the train

• Applying the emergency brakes

• Opening the doors on either side and closing them

• Reading the train speed

4 https://en.wikipedia.org/wiki/Photoelectric_sensor

https://en.wikipedia.org/wiki/Photoelectric_sensor

18

The actuators should do whatever hacking necessary to the train driving console and

control systems to be able to realize these requirements.

Emergency Situations Should Be Allowed to Be

Reported By the Passengers

Due to the full human-absence in the conducting booths (where the train is controlled),

and the full autonomy of the entire system, emergency situations can only be detected by

the human passengers. So a way to report emergencies by passengers must be

implemented and a procedure for handling such emergencies must be defined.

A Train Needs a Master Computer System

Since that it'd be a fairly complex network if each door sensor, railroad track receiver, on-

board GPS receiver, UGPS receiver and driving actuators communicated with the central

control server individually.

A better idea is to have one master embedded computer system on the train with

software logic to handle all these external devices while connecting to them via an on-

board communication network, and interface with the control server directly and relay

the needed control messages between it and the various components on the train.

The design and the realization of this component is irrelevant, along with the way it

communicates with the train hardware system components as long as it adheres to the

communication protocol to be explained in detail later while communicating with the

control server.

19

Railway Tracks Need to Be Switched Frequently

Parts of the railway tracks need to be switched frequently to allow the forming of

complex railway systems. Currently, the switching is done manually by workers from

switching booths that pull certain levers directly. A way to remotely manipulate these

switches is needed. It should be via a layer of actuators on top of the current equipment

that controls these switches and communicates with the control server as do the trains.

Also as are the train actuators, it is irrelevant to us how they are realized, as long as they

communicate with the control server in the specified communication protocol.

Control Room Operators Will Need a Way to Monitor

the Railway Network

Of course, complete exclusion of human interaction in this system is desired, but for

reasons including safety of the trains and the entire railway system, humans still need to

be able to monitor the system up close to be able to make sure everything is going

smoothly and be able to intervene at any time to pull emergency procedures in case

anything goes wrong.

A monitoring system should be set up running special monitoring software that will be

written as a part of this project that will allow the human observers to watch up close the

state of the entire railway system and intervene at any time to perform several pre-

configured procedures, as long as the needed security credentials are provided.

20

Trains, Railway Monitors, Railway Switching Booths

Need to Communicate with the Central Control

Server

Since that trains will not perform any driving logic, each train needs to periodically

communicate with the central control server in order to:

- Report location as received from the GPS device

- Report the track segment ID as picked up from the track close-range transmitters

- Report current speed

- Receive simple driving instructions such as accelerate, decelerate, stop, or any

other pre-configured instructions such as an emergency door-open.

- Railway switching booths need to be able to:

- Report the status of the switches they are responsible for switching

- Receive the instruction of turning on or off a certain switch.

Monitoring stations need to perform a complex set of features including pulling data

about the system from the control server and pushing instructions to it.

This type of two-way communication can be done seamlessly over a combination of

wireless and wired IP networks. Nodes themselves will be talking in TCP.

All the communication will be solely between each individual node and the control server.

No other two nodes will be allowed to talk to each other for security reasons.

21

HARDWARE SYSTEM COMPONENTS

22

The GPS Receiver

A GPS receiver module will be used in our on-board computer system on each train for

determining its location.

A typical GPS module outputs information in a standard NMEA format5, like this:

$GPGGA,174233.551,4003.8861,N,10512.5838,W,1,04,5.8,1593.0,M,

-20.7,M,,0000*51

$GPGSA,A,3,30,22,31,12,,,,,,,,,10.6,5.8,8.9*0B

$GPGSV,2,1,08,31,68,170,31,22,30,119,36,30,22,079,36,12,11,04

6,32*7D

$GPGSV,2,2,08,14,51,047,20,32,38,309,,11,28,285,,20,11,306,*7

3

$GPRMC,174233.551,A,4003.8861,N,10512.5838,W,0.07,84.92,20051

0,,,A*4A

$GPVTG,84.92,T,,M,0.07,N,0.1,K,A*3C

$GPGGA,174234.551,4003.8370,N,10512.6372,W,1,04,2.8,1285.8,M,

-20.7,M,,0000*54

$GPGSA,A,3,30,22,31,12,,,,,,,,,4.1,2.8,3.0*3C

$GPRMC,174234.551,A,4003.8370,N,10512.6372,W,0.62,352.44,2005

10,,,A*70

Each line of data is a self-contained NMEA sentence, independent from other sentences.

The data convey the complete PVT (position, velocity, time) solution computed by the

GPS receiver.

A NMEA sentence is a string of ASCII characters of 80 characters long maximum. Each

sentence begins with a '$' character and ends with a CR\NL sequence. The standard

defines the first word of each sentence to start with the two letters GP followed by three

more letters to determine the type of information conveyed in the rest of the sentence.

Each sentence has its own interpretation and is decoded uniquely to extract the fix data.

The most important NMEA sentence includes the GPGGA which provides 3D location and

accuracy data.

5 http://www.gpsinformation.org/dale/nmea.htm

http://www.gpsinformation.org/dale/nmea.htm

23

$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,

,*47

Where:

 GGA Global Positioning System Fix Data

 123519 Fix taken at 12:35:19 UTC

 4807.038,N Latitude 48 deg 07.038' N

 01131.000,E Longitude 11 deg 31.000' E

 1 Fix quality: 0 = invalid

 1 = GPS fix (SPS)

 2 = DGPS fix

 3 = PPS fix

 4 = Real Time Kinematic

 5 = Float RTK

 6 = estimated (dead reckoning)

 7 = Manual input mode

 8 = Simulation mode

 08 Number of satellites being tracked

 0.9 Horizontal dilution of position

 545.4,M Altitude, Meters, above mean sea level

 46.9,M Height of geoid (mean sea level) above

WGS84

 ellipsoid

 (empty field) time in seconds since last DGPS update

 (empty field) DGPS station ID number

 *47 the checksum data, always begins with *

The only data we're interested in, is (latitude, longitude) tuple which should be fed into

the computer system.

The UGPS

As explained earlier, the UGPS works by resolving the location of the underground

emitter on the surface computer system, and we need the location to be available on-

board the train computer system.

A modification to this system to suit our needs would be for the surface computer to

relay the train position back to the on-board train computer on which the UGPS emitter is

mounted via some dedicated radio link, and then the location should be handled as if

coming from the regular GPS receiver.

24

If this configuration seems rather complex, the implementing engineers are welcome to

replace this with any other underground positioning system that works and fulfils the

requirements of reporting the latitude and longitude of each train underground at all

time.

The TrackID Emitter

In order to identify the track upon which the train is moving, a close-range radio emitter

is installed at each track segment as planned by the system configurer.

The unique TrackID will be broadcasted continuously for any passing train over it to pick it

up.

The TrackID will be constant and should never be changed, so this device should be rather

simple to build and install. The only condition it must adhere to is the uniqueness of the

TrackID value which is discussed as a software design problem of the system.

The TrackID Receiver

One of these receivers should be installed on the bottom of each train. It should be

connected to the on-board train computer and its only job is to read the unique TrackID

value from a TrackID Emitter when the signal strength is past a certain calibrated

threshold to guarantee that the train is right on that track and not passing on a track near

it.

The Train Door Photo-sensor

A photo-sensor should be installed at a convenient position from the inside of each door

so as to be able to tell when people stop going in and out.

25

All the sensors should be connected to the on-board train computer and let it know the

status of each door in a simple binary signal that indicates either that people are still

going in and out or not.

The Emergency Button

One of these emergency buttons should be placed conveniently next to every door.

Pressing it would raise the emergency signal at the on-board computer and start the

executing emergency procedure that is defined in the software.

The Train Controlling Actuators

The hardware system that would hack the train controls in order to execute incoming

signals from the on-board train computer.

The actuators should work in two modes: BACKWARD and FOREWARD. Each actuating

input signal should be accompanied by one of the two modes signal.

The implementation of these actuators is irrelevant as long as it provides the following

black-box functions of input and output signals:

• Input:

o ACCELERATE: accelerates the train by 5km/h

o DECELERATE: decelerates the train by 5km/h

o BRAKE: apply the brake

o OPEN_DOOR_RIGHT: open the doors on the right relative to the FORWARD

direction

o OPEN_DOOR_LEFT: open the doors on the left relative to the FORWARD

direction

26

• Output:

o ACK: acknowledges the successful completion of the last received

instruction

o SPEED: the speed of the train in km/h

The Train On-board Computer

The computer system controlling all the functions of a single train, it should receive all the

signals from the following train components as inputs:

• The GPS Receiver

• The TrackID Receiver

• The UGPS Position Receiver

• Each Train Door Photo-sensor

• Each Emergency Button

• The actuator's ACK and SPEED signals

And generate the following signals as output:

- All the actuator's input signals

The system should have an active IP connection with the control server when it is booted

up.

The software requirements of this system will be explained in the software components

section.

The Railway Switching Hubs

These embedded computers will be scattered wherever there is a railway switch to be

activated or deactivated. It will be very simply comprised of an actuator to realize the

switching on or off, and whatever that is needed to make it connected to the same IP

network that the control server is connected to.

27

The software requirements of this system will be explained in the software components

section.

28

SOFTWARE DESIGN PROBLEMS

29

Choosing the Software Platform for Building the

Control Server

As its name implies, the control server is going to be in charge of running the whole

system. Every node in the system will only do its job upon direct instructions from the CS

with minimal to no thinking on the executing side, so a lot of effort must go into making

the software system running on the CS as reliable and scalable as possible.

Unlike on most of the other system components where embedded systems are forced to

run on limited-resources, the CS software should not be crippled by these limitations; so

more system resources can be traded off in favor for more reliability.

In the light of these considerations, our choice has settled on using the Java Virtual

Machine as our software platform and the Java programming language for building the

system.

Since that the Java Runtime Environment comes already packed with code for doing most

of the utility functions like TCP/IP networking and cryptography, this will make us focus

more easily on the design and the integration of the system itself.

The Structuring of a Railway Layout in a Computer

Software Memory

In the spirit of the OOP philosophy which lies in the heart of the Java programming

language, a sound model representation of the railway layout needed to be constructed

first in order to have a full grasp on how can the system think about these components

and how they react with each other.

The railway tracks were broken down into segments of 200m minimum length each that

are laid out in sequence with some segments more privileged than others, that they get

to switch between one of two possible end points.

30

The layout also includes such fixed entities as each train station and their locations, and

some attributes that are useful in deducing the driving instructions that are instructed at

trains.

In the rest of this subsection we introduce a break-down of the structure of these entities

and how they are related to each other.

RailwayEntity

A RailwayEntity is the supertype of all the railway entities that are identified by a unique

ID value.

Attributes:

- Id : UUID

Trackpoint

A Trackpoint is an entity comprising a location on a railway track. It is defined by its

(latitude, longitude) pair.

Attributes:

- latitude : real numerical value

- longitude : real numerical value

Segment (inherits RailwayEntity)

This entity is used to represent a railway segment of 200m maximum length. Its beginning

and end are identified by two TrackPoint entities.

Attributes:

- beginning : TrackPoint value

- end : TrackPoint value

ConjunctionSegment (inherits RailwayEntity)

This object represents a segment of a railway track that has one fixed beginning and can

switch from one of two possible ends. The one beginning and the two possible ends are

defined as three TrackPoint entities. One of the two ends could be eliminated to indicate

that this railway track segment can either connect to a point or be a dead end.

31

Attributes:

- begnning : TrackPoint value

- primary_end : TrackPoint value

- alternative_end (optional) : TrackPoint value

Station (inherits RailwayEntity)

This entity represents one of the train stations of the system. A station is where trains

usually make stops and people get in and out. Each station is defined by its own name and

the track segments that it encloses. A station usually encloses two or more segments, each

identified by their respective IDs.

Attributes:

– name : character string

– enclosed_segments : array of Segment

All these entities are implemented as Java classes and included in the railwayschematics

module. Please see the chapter about it for more details.

The Generation of Unique Ids

Since that the control server is going to be dealing with a multitude of instants of the

same type, representing many of the entities it is in control of, it needs a way of

identifying each entity by a value that is unique to it.

During our mapping of the railway tracks, we have used the Universally Unique Identifier

(UUID) standard to generate unique collision-free IDs for each entity.

A universally unique identifier (UUID) is an identifier standard used in software

construction, standardized by the Open Software Foundation (OSF) as part of the

Distributed Computing Environment (DCE).

The intent of UUIDs is to enable distributed systems to uniquely identify information

without significant central coordination. In this context the word unique should be taken

to mean "practically unique" rather than "guaranteed unique". Since the identifiers have

a finite size it is possible for two differing items to share the same identifier. The identifier

32

size and generation process need to be selected so as to make this sufficiently improbable

in practice. Anyone can create a UUID and use it to identify something with reasonable

confidence that the same identifier will never be unintentionally created by anyone to

identify something else. Information labeled with UUIDs can therefore be later combined

into a single database without needing to resolve identifier (ID) conflicts.

UUIDs are documented as part of ISO/IEC 11578:1996 "Information technology – Open

Systems Interconnection – Remote Procedure Call (RPC)" and more recently in ITU-T Rec.

X.667 | ISO/IEC 9834-8:2005. The IETF has published Standards Track RFC 4122 that is

technically equivalent with ITU-T Rec. X.667 | ISO/IEC 9834-8.

The Serialization of a Mapped-out Railway Layout

The structural mapping of the layout of the railway system need to be serialized in a form

suitable for storing to a computer filesystem for loading back later, and for transferring

across a data network.

For that, an XML schema was created to describe the entities comprising the railway

layout and all their mapped-out respective attributes.

Extensible Markup Language (XML) is a markup language that defines a set of rules for

encoding documents in a format that is both human-readable and machine-readable. It is

defined in the XML 1.0 Specification produced by the W3C, and several other related

specifications, all gratis open standards.6

An XML schema is a description of a type of XML document, typically expressed in terms

of constraints on the structure and content of documents of that type, above and beyond

the basic syntactical constraints imposed by XML itself. These constraints are generally

expressed using some combination of grammatical rules governing the order of elements,

Boolean predicates that the content must satisfy, data types governing the content of

6 https://en.wikipedia.org/wiki/XML

https://en.wikipedia.org/wiki/XML

33

elements and attributes, and more specialized rules such as uniqueness and referential

integrity constraints.7

Our format schema is composed of a root node:

<schematic version=’3’>

…

</schematic>

The root node encapsulates all the component definitions in of the layout. The attribute

version represents the spec version just to alert the parser, and so far our spec has been

bumped up till version 3 but could go higher before the project is actually finished.

The root node contains zero or one of each of the following nodes:

<segments>

…

</segments>

<conjunctionsegments>

…

</conjunctionsegments>

<stations>

…

</stations>

The <segments> node contains one or more of nodes that define a track segment each:

<segment id="xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx">

 <beginning>

 <latitude>[LATITUDE]</latitude>

 <longitude>[LONGITUDE]</longitude>

 </beginning>

 <end>

 <latitude>[LATITUDE]</latitude>

 <longitude>[LONGITUDE]</longitude>

 </end>

</segment>

7 http://en.wikipedia.org/wiki/XML_schema

http://en.wikipedia.org/wiki/XML_schema

34

The <beginning> and <end> nodes each describe a geographical point; a geographical

point is described by a decimal real value for latitude and another one for longitude.

The id attribute has the value of the unique schematic-scope id.

A conventional latitude or longitude value is represented in angular degrees, minutes and

seconds. The decimal real value representation of that is computed by:

[decimal value] = [degrees] + [minutes] / 60 + [seconds] / 3600

This is the total value of angular degrees.

The <conjunctionsegments> node contains one or more nodes that define a conjunction

segment each:

<conjunctionsegment>

 <beginning>

 <latitude>[LATITUDE]</latitude>

 <longitude>[LONGITUDE]</longitude>

 </beginning>

 <primaryend>

 <latitude>[LATITUDE]</latitude>

 <longitude>[LONGITUDE]</longitude>

 </primaryend>

 <alternativeend>

 <latitude>[LATITUDE]</latitude>

 <longitude>[LONGITUDE]</longitude>

 </alternativeend>

</conjunctionsegment>

The nodes <beginning>, <primaryend> and <alternativeend> represent the locations of

the three ends of the ConjunctionSegment, each consisting of a latitude and longitude

real decimal value as explained earlier.

The <primaryend> node is not required.

The <stations> node contains one or more nodes that describe a train station each:

35

<station id="xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx">

 <name>[STATION_NAME]</name>

 <segment id="xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx" />

 <segment id="xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx" />

 <segment id="xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx" />

</station>

The <name> node contains the textual name of the station.

There must exist one or more enclosed segments in the defined station, each segment is

identified by its id attribute from one of the already defined segments.

The Painting of a Railway Layout on a Computer

Terminal Screen

For our monitoring client system component, from which humans will be watching the

status of the railway system closely and making sure everything is running smoothly, the

system layout will have to be painted on a computer screen somehow with figures that

represent each component in the system and its status.

For the same reasons which have lead us to choose the Java Standard Edition platform for

building the control server software, we chose it for building our monitoring system

software.

Among the rich set of functionality provided the JSE runtime environment, there's the

excellent Java 2D API for producing advanced 2D graphics and images, encompassing line

art, text, and images in a single comprehensive model. The API provides extensive

support for image compositing and alpha channel images, a set of classes to provide

accurate color space definition and conversion, and a rich set of display-oriented imaging

operators.8

8http://java.sun.com/products/java-media/2D/index.jsp

http://java.sun.com/products/java-media/2D/index.jsp

36

Mapping Out the Railway Tracks

The process of actually mapping out the railway tracks is undefined in our project. As long

as the final mapping output is in XML format and conforms to our XML Schema

specification, it is fine to hack it out whichever way the system maintainer wishes.

The most accurate way is to traverse the real railway tracks while having a portable

computer system with GPS receiving capabilities that stores location information every

few moments configured relative to the traversing speed and then ironing out these

locations to track segments that conform to our recommended length of 200m each, and

configuring conjunction segments whenever is necessary.

However, for our demonstration purposes, we have built a simple WYSIWYG editor that

creates these schematics and the system maintainer is free to use it. It has the capability

of creating new schematics and editing already created ones. It could be used by the

system maintainer as a final step in editing after performing the traversing method

mentioned earlier.

Other Objects that are under the Control of the

Control Server

The control server's controlling side is going to be in charge of guiding the trains and

controlling the switching booths that control each ConjunctionSegment. So besides

having the entire mapped-out railway layout structured in its memory, the control server

is going to need object structure to represent trains and switching booths as well.

Train

An object of this type represents only one train that is several cars connected to two tank

locomotives on each end. The train can move forwards and backwards, can have either of

the doors on its side open or closed, and have an associated speed value in km/h.

Attributes:

- id : UUID

37

- doors_left_opened : boolean

- doors_right_opened : boolean

- speed : integer

- orientation : {BACKWARDS, FORWARDS}

SwitchingHub

A switching hub is a computer system connected to the control server via the IP network

and to the hardware that can switch conjunction segments between their primary and

alternative ends. It receives orders from the control server and actuates them.

Attributes:

- id : UUID

- controlled_conjunction_segments : UUID[]

38

The General Communication Protocol between

System Nodes and the Central Control Server

The communication between the system nodes and the control server are all going to be

over TCP connections established between each node and the control server. TCP will

provide the functionality of creating and terminating connections between the

communicating nodes, and also provide reliable message delivery and integrity checks on

behalf of them.

A typical communication scenario will be between two nodes with one them being The

Control Server and thus we will call it SERVER from now on, the other node will be called

CLIENT. The connection will always be initiated by CLIENT.

CLIENT: CLIENT_NAME \0 [multi-byte]

CLIENT: CLIENT_VERSION [1 byte]

CLIENT: CLIENT_ID [16 bytes]

CLIENT: FEATURES [1 byte]

SERVER: OK [1 byte]

 OR

SERVER: FAIL FAIL_MESSAGE \0 [multi-

byte]

SERVER: AUTHENTICATION_TOKEN_1 [128 bytes]

CLIENT: AUTHENTICATION_TOKEN_2 [128 bytes]

SERVER: OK

 OR

SERVER: FAIL FAIL_MESSAGE \0 [multi-

byte]

 CLIENT: …

SERVER: …

CLIENT: …

SERVER: …

CLIENT: …

SERVER: …

CLIENT: …

SERVER: …

…

39

The protocol can be broken down into three separate blocks; the first two blocks

comprise the initial mandatory handshake, followed by the actual communication stage

which is basically a conversation between the server and the client node in a protocol

that is client-specific, so we will go through each client-specific communication protocol

on its own, later in this chapter.

The Handshake stage is divided into two sub-stages:

1. The Client Identification Stage:

In which the client identifies its type, its unique instance ID that was assigned to it

by the system maintainer, along with the specific communication features that are

requested from the server to comply to.

2. The Authentication Stage:

In which the client authenticates its identity to the server by using a mixture of

public-key cryptography and cryptographically-strong hashing algorithms that are

described later in this chapter.

The Client Identification Stage

This is the very first stage of communication between a system node and the control

server. It begins by the system node identifying its type, protocol version, and its instance

ID followed by the specific features requested in this communication session.

The control server will be expecting a CLIENT_NAME value indicating its type as a multi-

byte character string terminated by a null character (ASCII code: 0).

The CLIENT_VERSION is an unsigned one-byte integer indicating the protocol revision that

the system node uses. The value can range from 1 to 255. The zero value is not permitted

as a CLIENT_VERSION.

The CLIENT_ID is the 16-byte UUID value representing the unique ID of that system node

assigned to it by the system maintainer. The ID should be already in the control server's

database associated with a record of that node.

40

The FEATURES value is one byte of 8 flags, designated as follows:

7 6 5 4 3 2 1 0

CMPRS_SRVR_MSGS CMPRS_CLNT_MSGS ENCRYPTION 0 0 0 0 0

CMPRS_SRVR_MSGS: If this bit is set then the messages sent from the control server are

compressed using the DEFLATE algorithm, level 9 with no headers or checksum.

CMPRS_CLNT_MSGS: If this bit is set then the messages sent from the client are

compressed using the DEFLATE algorithm, level 9 with no headers or checksum.

ENCRYPTION: If this bit is set then the messages from the control server and from the

client node are both encrypted using a shared secret-key cipher that is explained later in

the security section.

It should be noted however that not all these features are available to all the connecting

nodes. Enabling a feature on a connection with a node that doesn't support it produces a

FAIL message from the control server.

At the end of the Identification Stage, the server replies either with an OK message

designated by a 0x01 byte or a FAIL message designated by a 0x00 byte followed by a

null-terminated ASCII character string indicating some useful message that would help

the system maintainer figure out what was going wrong. After the FAIL message the

server would terminate the TCP connection. After an OK message the communication

transitions on to the next stage.

The Authentication Stage is explained in the next section.

41

Securing the Communication between the Trains and

the Central Control Server

Security is probably the most important aspect of designing this system. With going fully

automatic, the risk of eavesdroppers, hijackers and interceptors increase significantly.

All the sensitive communications between our system nodes is done at the transport

layer over a regular IP network. So the system maintainer is free to implement whatever

she finds necessary at the Network Layer or the Data Link Layer.

Going the extra mile for extra protection, and assuming that no other means of security

exist on the network, we've implemented security mechanisms deep within our

communication protocol between the control server and each other system node.

Using a mixture of public-key and secret-key cryptographic algorithms we provide means

for the system nodes to authenticate their identity, their messages and protect the

confidentiality of the communications.

The Role of Public-key Cryptography

Our public-key cryptographic algorithm of choice is the tried-and-true RSA. Every

communicating node on the system has its own 1024-bit public/private key pair that is

generated by the system maintainer upon installation.

Each system node other than the control server only knows its own private key and the

public key of the control server. The control server however knows the public key of every

node on the system plus its own private key.

All the public keys should be distributed discretely by the system maintainer using

methods of physical storage media for maximum security, since that these keys will be in

use for probably many years to come, treating them as secret keys is best for minimizing

the risks of brute-force attacks on the system.

The public-key cryptosystem in place here will provide means guaranteeing the

authenticity of each node.

42

The Role of Secret-key Cryptography

We can't do away with asymmetric ciphers for everything, since they are relatively slow

to encrypt and decrypt messages. We use the asymmetric cryptosystem – like everyone

else does – to securely exchange symmetric cipher keys that last for the duration of that

one connection.

We use the Blowfish algorithm as our symmetric cipher with a 128-bit key, the standard

64-bit block size, and the CFB8 mode that will effectively turn this block cipher into an 8-

bit self-synchronizing stream cipher. The Cipher Feedback Mode needs to be initialized

with a 64-bit initialization vector value that is shared between the two parties.

The Authentication Stage in the General Communication Protocol

The Authentication Stage is where the client node authenticates its identity and

exchanges the secret-key and the initialization vector needed for the symmetric ciphering

between the two communicating parties.

The control server generates a random 192-bit (24-byte) chunk of data using a pseudo-

random number generator, that we’ll call RAW_TOKEN. The RAW_TOKEN is then

encrypted with the client’s public key, and the resulting value is the 128 byte (1024 bit)

AUTH_TOKEN_1 that gets sent to the client.

At the client side, after receiving the AUTH_TOKEN_1, it is then decrypted using the

client's private key into the original 24-byte RAW_TOKEN.

Still at the client side, the RAW_TOKEN is then hashed using the SHA1 algorithm into a

digest of 16 bytes, and the hash digest is then encrypted with the client’s private key and

is sent back to the server as AUTH_TOKEN_2.

At the server, the SHA1 hash digest of the RAW_TOKEN is computed and is then

compared with the value that is received from the client (AUTH_TOKEN_2) after

decrypting it with the client’s public key.

The server then decides if the identity of the client is authenticated or not based on the

result of that comparison. If both values are equal, then the Authentication Stage is a

success and the server replies to the client with a 0x01 byte. If not, then the

43

Authentication Stage has failed and the server then responds with a 0x00 byte followed

by a null-terminated ASCII character string explaining the problem to the client.

Assuming success, the two parties now have authenticated the identity of each other

given that only they possess their respective private keys.

If ENCRYPTION was requested using the FEATURES byte, and encryption is enabled for

communication with this client type, then both parties should hold on to that 24-byte

RAW_TOKEN because it will be used as the 128-bit (16 bytes) symmetric session key and

the 64-bit (8 bytes) initial control vector for the symmetric cipher, in that order.

The Conversation Communication Stage

This is whatever data that gets exchanged between the client and the server after the

Handshake is complete. The data is exchanged in the form of messages, and their

structure should be known to both parties as part of the client-specific communication

protocol.

The Encrypted Message Format

Encryption will not add any overhead to exchanged messages, so it’s not considered a

message format on its own, but rather a more primitive layer below the messages layer

that handles the exchange of individual bytes. Sent and received bytes will be encrypted

and decrypted 1-byte at a time using the Blowfish cipher in CFB8 mode and sent as-is.

At the client side, two symmetric cipher instances should be instantiated, both with the

same secret-key and initialization vector and the agreed-upon mode. One cipher instance

will be used for encrypting and the other for decrypting. At the server-side, the same

thing is achieved.

The Compressed Communication Message Format

If compression is requested on either side of the conversation, then the messages sent

from the side with the compression enabled will be in the following format.

44

LEAD LNGTH_SIZE CMPRSD_LNGTH NRMAL_LNGTH CONTENT

0x0F,0xF0 0x0 0x0

The message starts with the LEAD byte; its value is either 0x0F or 0xF0. 0x0F means that

CONTENT is not actually compressed for some reason, probably because it's too short and

would yield a longer message if compressed. 0xF0 means that CONTENT is compressed.

The following LNGTH_SIZE byte is split in half, the most significant four bits represents the

number of bytes in the CMPRSD_LNGTH value, and the least significant four bits

represent the number of bytes in the NRMAL_LNGTH.

The values CMPRSD_LNGTH and NRMAL_LNGTH are each multi-byte unsigned integers in

big-endian order.

If the value of LEAD indicates that CONTENT is compressed, then the length of CONTENT

in bytes is the value of CMPRSD_LNGTH. After it is decompressed, the length of the

uncompressed CONTENT should be that of NRMAL_LNGTH.

If the value of LEAD indicates that CONTENT is not compressed, then the length of

CONTENT in bytes is the value of NRMAL_LNGTH. The four most significant bits in

LNGTH_SIZE then should be zeros and the value of CMPRSD_LNGTH should not be

expected.

The Variable-Length Message Format

This format is used when each message is arbitrarily-sized and compression is not

requested

Each message is structured as follows:

LENGTH_SIZE LENGTH CONTENT

The LENGTH_SIZE is a 1-byte unsigned integer that indicates the size of the LENGTH value.

45

The LENGTH is a multi-byte big-endian unsigned integer which expresses the length of the

CONTENT value in bytes.

The CONTENT is the actual message data.

The Fixed-Length Message Format

This is the most simple message format because it comprises no headers or footers or any

overhead to the data. Instead, the two parties must be expecting messages in certain

sizes based on turn or on the expected response to the last sent message.

The Communication Protocol with a Train Client

Server-side Compression Client-side Compression Encryption

No No Available

CLIENT_NAME Trainclient

CLIENT_VERSION 1

Server Message
Format:

Fixed-Length Message Format

Client Message
Format:

Fixed-Length Message Format

This is the description of the protocol of communication with a Train client. It has been

taken into consideration that this type of communication will be relayed by wireless

means mostly on the count of the moving trains, and these connections tend to be slow

and flaky, so the messages were designed to be as brief as possible.

Since the number of possible messages is small, a Fixed-Length Message format is

sufficient for the exchange of data between the two nodes.

Client Messages

The client only sends two kinds of messages; the first is a fixed-length status report of 33-

byte length, formatted as follows:

46

TIMESTAMP STATUS SPEED LOCATION LAST_TRACKID

The TIMESTAMP value is a 4-byte signed integer comprising the Unix timestamp of the

second the message is packed together.

The STATUS value is 1 byte of 8 bit-flags:

LEFT_DOORS_OPEN RIGHT_DOORS_OPEN EMERGENCY FORWARD X X X X

The LEFT_DOORS_OPEN and RIGHT_DOORS_OPEN are set when the left doors or the

right doors are open, respectively. The EMERGENCY bit is set when someone on the train

had pushed on an emergency button. The FORWARD bit is set when the train is being

driven by the locomotive labeled as the forward one, it is reset when the train is on the

backward mode. The least significant four bits are not used.

The SPEED value is the train's speed in km/h represented as a 4-byte big-endian IEEE-754

floating point number.

The LOCATION is the latitude value followed by the longitude value, each represented as

a big-endian IEEE-754 floating point number.

The LAST_TRACKID is the 16-byte UUID value of the LastTrackID stored on the train's

memory.

The second kind of message is an acknowledgement consisting of either 1-byte or a multi-

byte message:

Name Value Size

OK 0x01 [1 byte]

FAIL FAIL_MESSAGE 0x00 FAIL_MESSAGE [multi-byte]

The OK message indicates that the control instruction received has been executed

successfully.

47

The FAIL message indicates that the control instruction received has failed to executed. It

should be followed by a null-terminated character string message that indicates the

problem.

Server Messages

The server sends only control messages that are either 5 or 9 bytes long. The client should

be able to tell by the leading byte the length of the message. Each control message is

constructed from a 4-byte TIMESTAMP comprising the big-endian unsigned integer Unix

timestamp followed by the 1 or 5-byte instruction.

Name Value Size

BRAKE 0x01 [1 byte]

ACCELERATE_BY_1 0x02 [1 byte]

ACCELERATE_BY_2 0x03 [1 byte]

ACCELERATE_BY_3 0x04 [1 byte]

ACCELERATE_BY_4 0x05 [1 byte]

ACCELERATE_BY_5 0x06 [1 byte]

DECELERATE_BY_1 0x07 [1 byte]

DECELERATE_BY_2 0x08 [1 byte]

DECELERATE_BY_3 0x09 [1 byte]

DECELERATE_BY_4 0x0A [1 byte]

DECELERATE_BY_5 0x0B [1 byte]

SET_SPEED [SPEED_VALUE] 0x0C [SPEED_VALUE] [5 bytes]

OPEN_DOORS_LEFT 0x0D [1 byte]

OPEN_DOORS_RIGHT 0x0E [1 byte]

CLOSE_DOORS_LEFT 0x0F [1 byte]

CLOSE_DOORS_RIGHT 0x10 [1 byte]

The BRAKE message instructs the client to apply the brakes.

The ACCELERATE_BY_* messages instruct the client to accelerate by the specified amount

in the message name, in km/h.

The DECELERATE_BY_* messages work just like the ACCELERATE_BY_* only it instructs to

decelerate the speed in km/h.

48

The SET_SPEED message is one instruction byte followed by 4-bytes bearing a big-endian

IEEE 754 floating point number. The message instructs the client to change the speed to

the floating point value.

The OPEN_DOORS_RIGHT, OPEN_DOORS_LEFT, CLOSE_DOORS_RIGHT,

CLOSE_DOORS_LEFT messages instruct the client to open or close the right or left doors

of the train. The right and left doors are designated as such according to the forward

orientation of the train.

The Communication Protocol with a Switching Hub

Server-side Compression Client-side Compression Encryption

No No Available

CLIENT_NAME switchinghub

CLIENT_VERSION 1

Server Message
Format:

Fixed-Length Message Format

Client Message
Format:

Fixed-Length Message Format

This is a very simple fixed-length protocol with only two server messages and two

acknowledgement client messages.

Server Messages

Name Value Size

SWITCH_TO_PRIMARY ID 0x00 ID [17 byte]

SWITCH_TO_ALTERNATIVE ID 0x01 ID [17 byte]

The SWITCH_TO_PRIMARY message instructs the hub to switch the conjunction segment

identified by the id ID to its designated primary end.

The SWITCH_TO_ALTERNATIVE message does the same only with the alternative end.

49

Client Messages

Name Value Size

OK 0x01 [1 byte]

FAIL FAIL_MESSAGE 0x00 FAIL_MESSAGE [multi-byte]

The OK message indicates that the control instruction received has been executed

successfully.

The FAIL message indicates that the control instruction received has failed to executed. It

should be followed by a null-terminated character string message that indicates the

problem.

The Communication Protocol with a Monitoring

Station

Server-side Compression Client-side Compression Encryption

Available Available Available

CLIENT_NAME monitor

CLIENT_VERSION 1

Server Message
Format:

Variable-Length Message Format/Compressed Message Format

Client Message
Format:

Variable-Length Message Format/Compressed Message Format

This is the most complicated communication protocol. It consists of variable-size

messages between the two nodes.

If compression is used then the message originating from the node with the enabled

compression should bear the message format of compressed messages, as described

earlier.

The communication process is text oriented, and is always in the form of a request from

the client followed by a response from the server.

50

Request/Response Message Pairs

The messages from the client are in the form of method names and optional arguments

all separated by the space character, all encoded in 8-bit ASCII.

The responses are always XML documents encoded in UTF-8.

QUERY_SCHEMATIC

Response: The schematic of the railway system that the control server is in charge of

QUERY_TRAINS

Response: A sequence of train the train objects on the server side

QUERY_CHANGES

Response: A sequence of the different objects that have had their attributes changed

since the client made a connection with the server. These include Train and

ConjunctionSegment objects.

The Communication Protocol with a Controlling

Station

Server-side Compression Client-side Compression Encryption

Available Available Available

CLIENT_NAME controller

CLIENT_VERSION 1

Server Message
Format:

Variable-Length Message Format/Compressed Message Format

Client Message
Format:

Variable-Length Message Format/Compressed Message Format

This is the exact same protocol as the monitoring station, only it provides different

requests to the server side that should require different authorization keys than that

needed for just monitoring since they produce effects on the state of the railway system.

51

You should note that all these actions override the automatic control algorithms of the

control server, so they should only be used when absolutely necessary.

Request/Response Message Pairs

TRAIN_SET_SPEED TRAIN_ID TRAIN_SPEED

Response: An acknowledgement message.
Arguments:

- train_id: the id of the train
- train_speed: the desired speed in km/h

Effect: Changes the speed of the desired train to the specified value, overriding the
automatic control algorithms.

TRAIN_OPEN_DOORS_LEFT TRAIN_ID

Response: An acknowledgement message.
Arguments:

- train_id: the id of the train
Effect: Opens the left doors of the train.

TRAIN_OPEN_DOORS_RIGHT TRAIN_ID

Response: An acknowledgement message.
Arguments:

- train_id: the id of the train
Effect: Opens the right doors of the train.

TRAIN_CLOSE_DOORS_LEFT TRAIN_ID

Response: An acknowledgement message.
Arguments:

- train_id: the id of the train
Effect: Closes the left doors of the train.

TRAIN_CLOSE_DOORS_RIGHT TRAIN_ID

Response: An acknowledgement message.
Arguments:

- train_id: the id of the train
Effect: Closes the right doors of the train.

TRAIN_SET_ORIENTATION TRAIN_ID ORIENTATION

Response: An acknowledgement message.
Arguments:

- train_id: the id of the train
- orientation: {forward | backward}

Effect: Switches the orientation of the train to the specified value and stops its movement
until started up again.

TRAIN_BRAKE TRAIN_ID

Response: An acknowledgement message.

52

Arguments:
- train_id: the id of the train

Effect: Applies the brakes on the specified train.Figuring Out the Routes that Each
Individual Train Should Take

53

SOFTWARE SYSTEM COMPONENTS

54

The Control Server Software

Objectives

- Provides the main functionality of our project, which is the autonomous control of

the railway system entities like the trains and the switchable tracks

- Provides real time information about the status of the railway system

Platform

Runs on any computer capable of running the JRE7, on top of a Java Virtual Machine

Connectivity

Needs to be connected to the same IP network that is connecting all the other system

computer nodes

Human Interface

Does not provide a direct human interface, but its operation can be observed through

performance logs and it can be ordered to execute commands using a controller machine

Installation and Usage

Check the manual that comes with the software.

55

The Monitoring/Controlling Software

Objectives

- Provides real time information about the status of the railway system to the

observing humans

- Provides means for emergency remote controlling the system entities

Platform

Runs on any computer capable of running the JRE7, on top of a Java Virtual Machine

Connectivity

Needs to be connected to the same IP network that is connecting all the other system

computer nodes

Human Interface

- Provides graphical diagrams representing the status of the railway system

- Provides GUI means of controlling the controllable entities of the system

Installation and Usage

Check the manual that comes with the software.

56

The Schematic Editor

Objectives

- Provides a way for editing railway schematic maps in a WYSIWYG manner

Platform

Runs on any computer capable of running the JRE7, on top of a Java Virtual Machine

Connectivity

Not required

Human Interface

- Provides graphical diagrams representing the structure of the railway system

- Provides graphical means of editing the railway schematic

Installation and Usage

57

Creating a New Schematic File

1. Click on “Editor” and select “New File”.

2. Browse for the directory to save the new file and enter file name.

3. Click “Save”.

58

Loading a Schematic

1. Click on “Editor” and select “Load File”.

2. Browse for the file, select it and click “Open”.

Adding a New Segment

1. Select “Add Segment” from the editor options.

2. Enter the new segment's data:

3. Click “Add Segment” to save the new segment.

59

Editing an Existing Segment

1. Select “Edit Segment” from the editor options

2. Select the segment ID of the segment you want to edit from the drop down list.

3. Edit the segment's data then click “OK” to save the segment with the updated

data.

4. To delete the segment from the system, click “Delete Segment”.

Adding a New Conjunction Segment

1. Select “Add Conjunction Segment” from the editor options.

2. Enter the new segment's data.

3. Click “Add Conjunction Segment” to save the new conjunction segment.

60

Editing an Existing Conjunction Segment

1. Select “Edit Conjunction Segment” from the editor options.

2. Select the segment ID of the conjunction segment you want to edit from the drop

down list.

3. Edit the segment's data then click “OK” to save the segment with the updated

data.

4. To delete the segment from the system, click “Delete Segment”.

Adding a New Station

1. Select “Add Station” from the editor options.

2. Enter station name.

3. Select the segments that cover the stations from the segments list.

4. Click “OK” to save the new station to the schematic.

61

Editing an Existing Station

1. Select “Edit Station” from the editor options.

2. Select the station ID of the station you want to edit from the drop down list.

3. Select the new segments that cover the station.

4. Click “OK” to save the new segments to the station.

5. To delete the selected segment, click “Delete Segment”.

Viewing Area

The viewing area will display the map of the schematic system using the data entered

using the schematic editor.

- Segments are represented by Green Lines.

- Track Points are represented by Red Dots.

- Conjunction Segments are represented by Black Lines.

- Stations are represented by Blue Rectangles parallel to the segments that cover

them.

The user can zoom in and out in the viewing area for a more clear view of the railway

tracks using the “+” & “-” buttons.

62

Sample from a Railway Schematic Map

63

TECHNOLOGIES USED

64

The Java Runtime Environment

Java is a programming language and computing platform first released by Sun

Microsystems in 1995. It is the underlying technology that powers state-of-the-art

programs including utilities, games, and business applications. Java runs on more than

850 million personal computers worldwide, and on billions of devices worldwide,

including mobile and TV devices. The language derives much of its syntax

from C and C++ but has a simplerobject model and fewer low-level facilities. Java

applications are typicallycompiled to bytecode (class file) that can run on any Java Virtual

Machine(JVM) regardless of computer architecture. Java is a general-purpose,

concurrent, class-based, object-oriented language that is specifically designed to have as

few implementation dependencies as possible. It is intended to let application developers

"write once, run anywhere" (WORA), meaning that code that runs on one platform does

not need to be recompiled to run on another. Java is as of 2012 one of the most popular

programming languages in use, particularly for client-server web applications, with a

reported 10 million users.

The Java Runtime Environment (JRE) is what you get when you download Java software.

The JRE consists of the Java Virtual Machine (JVM), Java platform core classes, and

supporting Java platform libraries. The JRE is the runtime portion of Java software, which

is all you need to run it in your Web browser. When you download Java software, you

only get what you need - no spyware, and no viruses.

65

Java 2D

The Java 2D API is a set of classes for advanced 2D graphics and imaging, encompassing

line art, text, and images in a single comprehensive model. The API provides extensive

support for image compositing and alpha channel images, a set of classes to provide

accurate color space definition and conversion, and a rich set of display-oriented imaging

operators.

Basic Concepts

These objects are a necessary part of every Java 2D drawing operation.

Shapes

A shape in Java 2D is a boundary which defines an inside and an outside. Pixels inside the

shape are affected by the drawing operation, those outside are not.

Trying to fill a straight line segment will result in no pixels being affected, as such a shape

does not contain any pixels itself. Instead, a thin rectangle must be used so that the shape

contains some pixels.

Paints

A paint generates the colors to be used for each pixel of the fill operation. The simplest

paint is java.awt.Color, which generates the same color for all pixels. More complicated

paints may produce gradients, images, or indeed any combination of colors. Filling a

circular shape using the color yellow results in a solid yellow circle, while filling the same

circular shape using a paint that generates an image produces a circular cutout of the

image.

Composites

During any drawing operation, there is a source (the pixels being produced by the paint)

and a destination (the pixels already onscreen). Normally, the source pixels simply

overwrite the destination pixels, but the composite allows this behavior to be changed.

The composite, given the source and destination pixels, produces the final result that

ultimately ends up onscreen. The most common composite is java.awt.AlphaComposite,

which can treat the pixels being drawn as partially transparent, so that the destination

pixels show through to some degree.

66

Filling

To fill a shape, the first step is to identify which pixels fall inside the shape. These pixels

will be affected by the fill operation. Pixels that are partially inside and partially outside

the shape may be affected to a lesser degree if anti-aliasing is enabled.

The paint is then asked to generate a color for each of the pixels to be painted. In the

common case of a solid-color fill, each pixel will be set to the same color.

The composite takes the pixels generated by the paint and combines them with the pixels

already onscreen to produce the final result.

Advanced Objects

These objects can be viewed as performing their duties in terms of the simpler objects

described above.

Transform

Every Java 2D operation is subject to a transform, so that shapes may be translated,

rotated, sheared, and scaled as they are drawn. The active transform is most often

the identity transform, which does nothing.

Filling using a transform can be viewed as simply creating a new, transformed shape and

then filling that shape.

Stroke

In addition to the fill operation, Java 2D provides a draw operation. While fill draws the

interior of a shape, draw draws its outline. The outline can be as simple as a thin line, or

as complicated as a dashed line with each dash having rounded edges.

The object responsible for generating the outline is the stroke. Given an input shape, the

stroke produces a new shape representing its outline. For instance, an infinitely thin line

segment (with no interior) might be stroked into a one-pixel-wide rectangle.

A draw operation can therefore be described as creating a new, stroked object and then

filling that object.

67

Technically speaking, the stroke is only required to accept an input shape and produce a

new shape. The stroke implementation provided with Java 2D implements the outline

rules described above, but a custom-written stroke could produce any shape it wished.

GPS

The Global Positioning System (GPS) is a space-based satellite navigation system that

provides location and time information in all weather, anywhere on or near the Earth,

where there is an unobstructed line of sight to four or more GPS satellites. It is

maintained by the United States government and is freely accessible to anyone with a

GPS receiver.

The GPS program provides critical capabilities to military, civil and commercial users

around the world. In addition, GPS is the backbone for modernizing the global air traffic

system.

The GPS project was developed in 1973 to overcome the limitations of previous

navigation systems, integrating ideas from several predecessors, including a number of

classified engineering design studies from the 1960s. GPS was created and realized by

the U.S. Department of Defense (DoD) and was originally run with 24 satellites. It became

fully operational in 1994.

Advances in technology and new demands on the existing system have now led to efforts

to modernize the GPS system and implement the next generation of GPS III satellites and

Next Generation Operational Control System (OCX). Announcements from the Vice

President and the White House in 1998 initiated these changes. In 2000, U.S. Congress

authorized the modernization effort, referred to as GPS III.

68

Trilateration

In geometry, trilateration is the process of determination absolute or relative locations of

points by measurement of distances, using the geometry of circles, spheres or triangles.

In addition to its interest as a geometric problem, trilateration does have practical

applications in surveying and navigation, including global positioning systems (GPS). In

contrast to triangulation it does not involve the measurement of angles.

In two-dimensional geometry, when it is known that a point lies on two curves such as the

boundaries of two circles then the circle centers and the two radii provide sufficient

information to narrow the possible locations down to two. Additional information may

narrow the possibilities down to one unique location.

In three-dimensional geometry, when it is known that a point lies on three surfaces such

as the surfaces of three spheres then the centers of the three spheres along with their

radii provide sufficient information to narrow the possible locations down to no more

than two. If it is known that the point lies on the surface of a fourth sphere then

knowledge of this sphere's center along with its radius is sufficient to determine the one

unique location.

69

The plane, z=0, showing the 3 sphere centers, P1, P2, and P3; their (x, y) coordinates; and

the 3 sphere radii, r1, r2, and r3. The two intersections of the three sphere surfaces are

directly in front and directly behind the point designated intersections in the z = 0 plane.

Photoelectric Sensors

A photoelectric sensor, or photoeye, is a device used to detect the distance, absence, or

presence of an object by using a light transmitter, often infrared, and

a photoelectric receiver. They are used extensively in industrial manufacturing. There are

three different functional types: opposed (through beam), retroreflective, and proximity-

sensing (diffused).

Types

A self-contained photoelectric sensor contains the optics, along with the electronics. It

requires only a power source. The sensor performs its own modulation,

demodulation, amplification, and output switching. Some self-contained sensors provide

such options as built-in control timers or counters. Because of technological progress,

self-contained photoelectric sensors have become increasingly smaller.

Remote photoelectric sensors used for remote sensing contain only the optical

components of a sensor. The circuitry for power input, amplification, and output

switching are located elsewhere, typically in a control panel. This allows the sensor, itself,

to be very small. Also, the controls for the sensor are more accessible, since they may be

bigger.

When space is restricted or the environment too hostile even for remote sensors, fiber

optics may be used. Fiber optics are passive mechanical sensing components. They may

be used with either remote or self-contained sensors. They have no electrical circuitry

and no moving parts, and can safely pipe light into and out of hostile environments.

70

Sensing modes

An opposed (through beam) arrangement consists of a receiver located within the line-of-

sight of the transmitter. In this mode, an object is detected when the light beam is

blocked from getting to the receiver from the transmitter.

A retroreflective arrangement places the transmitter and receiver at the same location

and uses a reflector to bounce the light beam back from the transmitter to the receiver.

An object is sensed when the beam is interrupted and fails to reach the receiver.

A proximity-sensing (diffused) arrangement is one in which the transmitted radiation

must reflect off the object in order to reach the receiver. In this mode, an object is

detected when the receiver sees the transmitted source rather than when it fails to see it.

Some photoeyes have two different operational types, light operate and dark operate.

Light operate photoeyes become operational when the receiver "receives" the

transmitter signal. Dark operate photoeyes become operational when the receiver "does

not receive" the transmitter signal.

The detecting range of a photoelectric sensor is its "field of view", or the maximum

distance the sensor can retrieve information from, minus the minimum distance. A

minimum detectable object is the smallest object the sensor can detect. More accurate

sensors can often have minimum detectable objects of minuscule size.

Illustrating image of photoelectric sensor that detect if there is an object in front of it or not.

71

Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) is one of the core protocols of the Internet

Protocol Suite. TCP is one of the two original components of the suite, complementing

the Internet Protocol (IP), and therefore the entire suite is commonly referred to

as TCP/IP. TCP provides reliable, ordered delivery of a stream of bytes from a program on

one computer to another program on another computer. TCP is the protocol used by

major Internet applications such as the World Wide Web, email, remote

administration and file transfer. Other applications, which do not require reliable data

stream service, may use the User Datagram Protocol (UDP), which provides a

datagram service that emphasizes reduced latency over reliability.

Network function

The protocol corresponds to the transport layer of TCP/IP suite. TCP provides a

communication service at an intermediate level between an application program and the

Internet Protocol (IP). That is, when an application program desires to send a large chunk

of data across the Internet using IP, instead of breaking the data into IP-sized pieces and

issuing a series of IP requests, the software can issue a single request to TCP and let TCP

handle the IP details.

IP works by exchanging pieces of information called packets. A packet is a sequence

of octets and consists of a header followed by a body. The header describes the packet's

destination and, optionally, the routers to use for forwarding until it arrives at its

destination. The body contains the data IP is transmitting.

Due to network congestion, traffic load balancing, or other unpredictable network

behavior, IP packets can be lost, duplicated, or delivered out of order. TCP detects these

problems, requests retransmission of lost data, rearranges out-of-order data, and even

helps minimize network congestion to reduce the occurrence of the other problems.

Once the TCP receiver has reassembled the sequence of octets originally transmitted, it

passes them to the application program. Thus, TCP abstracts the application's

communication from the underlying networking details.

72

TCP is utilized extensively by many of the Internet's most popular applications, including

the World Wide Web (WWW), E-mail, File Transfer Protocol, Secure Shell, peer-to-

peer file sharing, and some streaming media applications.

TCP is optimized for accurate delivery rather than timely delivery, and therefore, TCP

sometimes incurs relatively long delays (in the order of seconds) while waiting for out-of-

order messages or retransmissions of lost messages. It is not particularly suitable for real-

time applications such as Voice over IP. For such applications, protocols like the Real-time

Transport Protocol (RTP) running over the User Datagram Protocol (UDP) are usually

recommended instead.

TCP is a reliable stream delivery service that guarantees that all bytes received will be

identical with bytes sent and in the correct order. Since packet transfer is not reliable, a

technique known as positive acknowledgment with retransmission is used to guarantee

reliability of packet transfers. This fundamental technique requires the receiver to

respond with an acknowledgment message as it receives the data. The sender keeps a

record of each packet it sends. The sender also keeps a timer from when the packet was

sent, and retransmits a packet if the timer expires before the message has been

acknowledged. The timer is needed in case a packet gets lost or corrupted.

TCP consists of a set of rules: for the protocol, that are used with the Internet Protocol,

and for the IP, to send data "in a form of message units" between computers over the

Internet. While IP handles actual delivery of the data, TCP keeps track of the individual

units of data transmission, called segments, that a message is divided into for efficient

routing through the network. For example, when an HTML file is sent from a Web server,

the TCP software layer of that server divides the sequence of octets of the file into

segments and forwards them individually to the IP software layer (Internet Layer). The

Internet Layer encapsulates each TCP segment into an IP packet by adding a header that

includes (among other data) the destination IP address. Even though every packet has the

same destination address, they can be routed on different paths through the network.

When the client program on the destination computer receives them, the TCP layer

(Transport Layer) reassembles the individual segments and ensures they are correctly

ordered and error free as it streams them to an application.

73

IP Networking

The Internet Protocol (IP) is the principal communications protocol used for

relaying datagrams (also known as network packets) across an internetwork using

the Internet Protocol Suite. Responsible for routing packets across network boundaries, it

is the primary protocol that establishes the Internet.

IP is the primary protocol in the Internet Layer of the Internet Protocol Suite and has the

task of delivering datagrams from the source host to the destination host solely based on

the addresses. For this purpose, IP defines datagram structures that encapsulate the data

to be delivered. It also defines addressing methods that are used to label the datagram

source and destination.

Function

The Internet Protocol is responsible for addressing hosts and routing datagrams (packets)

from a source host to the destination host across one or more IP networks. For this

purpose the Internet Protocol defines an addressing system that has two functions:

identifying hosts and providing a logical location service. This is accomplished by defining

standard datagrams and a standard addressing system.

Public-key cryptography

Public-key cryptography refers to a cryptographic system requiring two separate keys,

one of which is secret and one of which is public. There are three primary kinds of public

key systems: public key cryptosystems, public key distribution systems, and digital

signature systems. Diffie–Hellman key exchange is the most widely used public key

distribution system, and allows two users to securely agree on a shared secret, even if all

their communications are compromised. The shared secret thus generated is then

typically used as the key in a symmetric cipher. The Digital Signature Algorithm is the

most widely used digital signature system. It can generate a digital signature, but has no

privacy features.

74

 A public key cryptosystem is more versatile and can be used both as a public key

distribution system and a digital signature algorithm. A public key cryptosystem has two

keys, one to lock or encrypt the plaintext, and one to unlock or decrypt the cyphertext.

Neither key will do both functions. One of these keys is published or public and the other

is kept private. If the lock/encryption key is the one published then the system enables

private communication from the public to the unlocking key's owner. If the

unlock/decryption key is the one published then the system serves as a signature verifier

of documents locked by the owner of the private key. Although in this latter case, since

encrypting the entire message is relatively expensive computationally, in practice just

a hash of the message is encrypted for signature verification purposes.

Because this cryptographic approach uses asymmetric key algorithms such as RSA its

more general name is "asymmetric key cryptography." Some of these algorithms have the

public key/private key property—that is, neither key is derivable from knowledge of the

other—but not all asymmetric key algorithms do. Those without derivable keys are

particularly useful and have been widely deployed; hence, they are often the meaning

behind the name. Although different, the two parts of the key pair are mathematically

linked. The public key is used to transform a message into an unreadable form,

decryptable only by using the (different but matching) private key. By publishing the

public key, the key producer empowers anyone who gets a copy of the public key to

produce messages only s/he can read—because only the key producer has a copy of the

private key (required for decryption). When someone wants to send a secure message to

the creator of those keys, the sender encrypts it (i.e., transforms it into an unreadable

form) using the intended recipient's public key; to decrypt the message, the recipient uses

the private key. No one else, including the sender, can do so.

Thus, unlike symmetric key algorithms, a public key algorithm does not require

a secure initial exchange of one, or more, secret keys between the sender and receiver.

These algorithms work in such a way that, while it is easy for the intended recipient to

generate the public and private keys and to decrypt the message using the private key,

and while it is easy for the sender to encrypt the message using the public key, it is

extremely difficult for anyone to figure out the private key based on their knowledge of

the public key. They are based on mathematical relationships (the most notable ones

75

being the integer factorization and discrete logarithm problems) that have no efficient

solution.

The use of these algorithms also allows authenticity of a message to be checked by

creating a digital signature of a message using the private key, which can be verified using

the public key.

Public key cryptography is a fundamental and widely used technology. It is an approach

used by many cryptographic algorithms and cryptosystems. It underpins such Internet

standards as Transport Layer Security (TLS) (successor to SSL), PGP, and GPG.

How it works

The distinguishing technique used in public key cryptography is the use of asymmetric key

algorithms, where the key used to encrypt a message is not the same as the key used to

decrypt it. Each user has a pair of cryptographic keys — a public encryption key and a

private decryption key. The publicly available encrypting-key is widely distributed, while

the private decrypting-key is known only to the recipient. Messages are encrypted with

the recipient's public key and can be decrypted only with the corresponding private key.

The keys are related mathematically, but parameters are chosen so that determining the

private key from the public key is prohibitively expensive. The discovery of algorithms

that could produce public/private key pairs revolutionized the practice of cryptography

beginning in the mid-1970s.

76

In contrast, symmetric-key algorithms, variations of which have been used for thousands

of years, use a single secret key — which must be shared and kept private by both sender

and receiver — for both encryption and decryption. To use a symmetric encryption

scheme, the sender and receiver must securely share a key in advance.

Because symmetric key algorithms are nearly always much less computationally intensive,

it is common to exchange a key using a key-exchange algorithm and transmit data using

that key and a symmetric key algorithm. PGP and the SSL/TLS family of schemes do this,

for instance, and are thus called hybrid cryptosystems.

The RSA Algorithm

RSA is an algorithm for public-key cryptography that is based on the presumed difficulty

of factoring large integers, the factoring problem. RSA stands for Ron Rivest, Adi

Shamir and Leonard Adleman, who first publicly described it in 1978. A user of RSA

creates and then publishes the product of two large prime numbers, along with an

auxiliary value, as their public key. The prime factors must be kept secret. Anyone can use

the public key to encrypt a message, but with currently published methods, if the public

key is large enough, only someone with knowledge of the prime factors can feasibly

decode the message. Whether breaking RSA encryption is as hard as factoring is an open

question known as the RSA problem.

Operation

The RSA algorithm involves three steps: key generation, encryption and decryption.

Key generation

RSA involves a public key and a private key. The public key can be known to everyone

and is used for encrypting messages. Messages encrypted with the public key can only be

decrypted using the private key.

The keys for the RSA algorithm are generated the following way:

77

1. Choose two distinct prime numbers p and q.

o For security purposes, the integers p and q should be chosen at random,

and should be of similar bit-length. Prime integers can be efficiently found

using a primality test.

2. Compute n = pq.

o n is used as the modulus for both the public and private keys

3. Compute φ(n) = (p – 1)(q – 1), where φ is Euler's totient function.

4. Choose an integer e such that 1 < e < φ(n) and greatest common divisor of (e,

φ(n)) = 1; i.e., e and φ(n) are coprime.

o e is released as the public key exponent.

o e having a short bit-length and small Hamming weight results in more

efficient encryption - most commonly 0x10001 = 65,537. However, small

values of e (such as 3) have been shown to be less secure in some

settings.[4]

5. Determine d as:

o

o i.e., d is the multiplicative inverse of e mod φ(n).

 This is more clearly stated as solve for d given (de) mod φ(n) = 1

 This is often computed using the extended Euclidean algorithm.

 d is kept as the private key exponent.

Encryption

Alice transmits her public key (n, e) to Bob and keeps the private key secret. Bob then

wishes to send message M to Alice.

He first turns M into an integer m, such that 0 < m < n by using an agreed-upon reversible

protocol known as a padding scheme. He then computes the ciphertext corresponding

to

.

This can be done quickly using the method of exponentiation by squaring. Bob then

transmits to Alice.

http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Primality_test
http://en.wikipedia.org/wiki/Modular_arithmetic
http://en.wikipedia.org/wiki/Euler%27s_totient_function
http://en.wikipedia.org/wiki/Greatest_common_divisor
http://en.wikipedia.org/wiki/Coprime
http://en.wikipedia.org/wiki/Bit-length
http://en.wikipedia.org/wiki/Hamming_weight
http://en.wikipedia.org/wiki/RSA_(algorithm)#cite_note-Boneh-3
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
http://en.wikipedia.org/wiki/Alice_and_Bob
http://en.wikipedia.org/wiki/Alice_and_Bob
http://en.wikipedia.org/wiki/RSA_(algorithm)#Padding_schemes
http://en.wikipedia.org/wiki/Exponentiation_by_squaring

78

Note that at least nine values of m could yield a ciphertext c equal to m, but this is very

unlikely to occur in practice.

Decryption

Alice can recover from by using her private key exponent via computing

.

Given , she can recover the original message M by reversing the padding scheme.

(In practice, there are more efficient methods of calculating using the pre computed

values below.)

Secret-key Cryptography

Symmetric-key algorithms are a class of algorithms for cryptography that use the same

cryptographic keys for both encryption of plaintext and decryption of ciphertext. The keys

may be identical or there may be a simple transformation to go between the two keys.

The keys, in practice, represent a shared secret between two or more parties that can be

used to maintain a private information link. This requirement that both parties have

access to the secret key is one of the main drawbacks of symmetric key encryption, in

comparison to public-key encryption.

Types of symmetric-key algorithms

Symmetric-key encryption can use either stream ciphers or block ciphers.

• Stream ciphers encrypt the digits (typically bits) of a message one at a time.

• Block ciphers take a number of bits and encrypt them as a single unit, padding

the plaintext so that it is a multiple of the block size. Blocks of 64 bits have

been commonly used. The Advanced Encryption Standard (AES) algorithm

approved by NIST in December 2001 uses 128-bit blocks.

79

Implementations

Examples of popular and well-respected symmetric algorithms include Twofish, Serpent,

AES (Rijndael), Blowfish, CAST5, RC4, 3DES, and IDEA.

80

BIBLIOGRAPHY

81

Bibliography

 English Wikipedia: Java (programming language) -
http://en.wikipedia.org/wiki/Java_(programming_language)

 JAVA: What Is Java - http://www.java.com/en/download/faq/whatis_java.xml

 English Wikipedia: Java 2D - http://en.wikipedia.org/wiki/Java_2D

 English Wikipedia: Global Positioning System -
http://en.wikipedia.org/wiki/Global_Positioning_System

 English Wikipedia: Trilateration - http://en.wikipedia.org/wiki/Trilateration

 English Wikipedia: Photoelectric sensor -
http://en.wikipedia.org/wiki/Photoelectric_sensor

 English Wikipedia: Switch - http://en.wikipedia.org/wiki/Switch

 English Wikipedia: Transmission Control Protocol -
http://en.wikipedia.org/wiki/Transmission_Control_Protocol

 English Wikipedia: Internet Protocol -
http://en.wikipedia.org/wiki/Internet_Protocol

 English Wikipedia: Public-key cryptography - http://en.wikipedia.org/wiki/Public-
key_cryptography

 English Wikipeida: Symmetric-key algorithm -
http://en.wikipedia.org/wiki/Symmetric-key_algorithm

 English Wikipedia: IEEE floating point -
http://en.wikipedia.org/wiki/IEEE_floating_point

 BinaryEssence: Deflate: Basic Algorithm -
http://www.binaryessence.com/dct/imp/en000241.htm

 English Wikipedia: RSA (algorithm) - http://en.wikipedia.org/wiki/RSA_(algorithm)

 English Wikipedia: Blowfish (cipher) -
http://en.wikipedia.org/wiki/Blowfish_(cipher)

 English WIkipedia: Railroad switch - http://en.wikipedia.org/wiki/Railroad_switch

 English Wikipedia: Track circuit - http://en.wikipedia.org/wiki/Track_circuit

 GPS.gov: GPS Accuracy -
http://www.gps.gov/systems/gps/performance/accuracy/

 InfraSurvey: UnderGround Positioning System -
http://www.infrasurvey.ch/?lang=en/

82

DOCUMENT REVISION HISTORY

83

1.1

 Fixed diagram on page 9

1.2

 Changes to the communication protocols between the control server and the

various clients

